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Abstract

A MODEL TO PREDICT 24-HOUR URINARY CREATININE LEVEL
USING REPEATED MEASUREMENTS

By Donna S. Kroos

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2006

Thesis Director: Dr. James E. Mays,
Associate Professor, Department of Statistical Sciences & Operations Research

Creatinine is a metabolic waste product, removed from the blood by the kidneys,
and excreted in the urine. The measurement of creatinine is used in the assessment and
monitoring of many medical conditions as well as in the determination or adjustment of
absorbed dosage of pesticides. Earlier models to predict 24-hour urinary creatinine used
ordinary least squares regression and assumed that the subjects’ observations were
uncorrelated. However, many of these studies had repeated creatinine measurements for
each of their subjects. Repeated measures on the same subject frequently are correlated.
Using data from the NIOSH-CDC “Pesticide Dose Monitoring in Turf Applicators”
study, this thesis project built a model to predict 24-hour urinary creatinine using the
Mixed Model methodology. A covariance structure, that permitted multiple observations
for any one individual to be correlated, was identified and utilized. The predictive

capabilities of this model were then compared to the earlier models investigated.
X



Introduction

Creatinine (from muscle creatine) is a metabolic waste product removed from the
blood by the kidneys and excreted in the urine (Katzung 1989). The concentration of
creatinine in urine will vary based on a number of factors including hydration, kidney
function, age, and gender (Heymsfield et al. 1983). Other factors thought to influence
creatinine include muscle mass, height, weight, emotional stress, exercise, and protein
consumption (Turner and Cohn 1975; Heymsfield et al. 1983; Kesteloot and Joossens
1993; Proctor et al. 1999). It also has been shown that there are large changes in urinary
creatinine after trauma, infection, and inflammatory conditions (Fuller and Elia 1988).

The 24-hour level of creatinine in urine is frequently used in the assessment of
many medical conditions, especially those relating to chronic kidney disease (Letteri et
al. 1975; Johnson et al. 2004). Other uses include investigating the relationship between
creatinine and dietary protein intake (Kesteloot and Jooseens 1993; Poortmans et al.
1997), using creatinine excretion in body composition studies (Welle et al. 1996) and
estimating age related muscle loss (Proctor et al. 1999).

Creatinine concentration also is sometimes used in pesticide exposure research to
provide a rough estimation of whether a urine sample is ‘complete’ (Harris et al. 2000).
‘Complete’ in this context implies that all individual urine voids for the specified time

period (usually 24 hours) were captured in the study participant’s container.
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The National Institute of Occupational Safety and Health (NIOSH), Centers for

Disease Control and Prevention (CDC) provided a four year grant to Virginia
Commonwealth University (VCU) for a national study entitled “Pesticide Dose
Monitoring in Turf Applicators.” The overall goal of this study was to determine the
absorbed dose, and factors that affect the absorbed dose, of various pesticides (including
weed control products and insecticides) by the evaluation of the amount of parent
compound or metabolites excreted in the urine of professional lawn care workers who
were exposed to these pesticides over time. In this study, investigators probed how these
workers may have inhaled, ingested, or absorbed (through contact with the skin) these
pesticides. The frequency of exposure during a work week, the nature of the lawn care
worker’s interaction with the pesticide (during application, mixing, or loading it into
tanks), and preventive safety measures used in handling the pesticides (e.g., eye
protection, gloves, clean uniforms, hand washing, etc.) also were explored.

Study participants were asked to provide urine samples for multiple days during
their work weeks. Each sample collected was the accumulated individual urine voids of a
participant over a specific time period (which in most cases was a 24-hour block of time
and in other cases was a 12-hour block of time). Study participants were asked to provide
additional information on their work schedules, their pesticide handling practices,
existing health issues, diet information, and demographics.

All urine samples were analyzed for six pesticide parent compounds and/or their
metabolites. In addition, these samples also were tested for their creatinine concentration.

The ‘completeness’ of the urine collections is instrumental to the estimation of the
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absorbed dosage of pesticide. If ‘complete’ urine samples were not provided by the study

participants, the absorbed doses of pesticide will be underestimated.

Variations in ‘complete’ urine collection do differ by individual and within an
individual over time. It is important to develop methods to evaluate and if necessary,
correct for, within and between individual variations over time. This will allow for more

accurate dose assessment and human health risk assessment for pesticides.



Objectives

There are two main objectives for this thesis. The first is to create a predictive
model for a total 24-hour urinary creatinine level using the data from the NIOSH-CDC
“Pesticide Dose Monitoring in Turf Applicators” study. Possible factors to be included in
this model are participant’s age, body height, body weight, Body Mass Index (BMI),
gender, tobacco smoking habits, medical conditions that affect kidney function (such as
diabetes, congestive heart failure, high blood pressure, arteriosclerosis,
glomerulonephritis, pyelonephritis, and urinary obstruction), participation in protein
intensive diets (e.g., Atkins diet), alcohol consumption, usage of prescription
medications, and usage of creatine supplements (to build muscle mass).

In any one person, when tested over several days, there may be multiple reasons
for the variability observed in the subject’s 24-hour urine creatinine levels. This makes
building a predictive model more challenging. A key question arises: how much of the
inherent variability in a person’s creatinine level is a function of within individual
variation over time? Short term variation (measured in days) in creatinine excretion is
expected in an individual due to short term changes in diet or medication use. One also
would expect decreases in 12 or 24-hour creatinine with missed urine samples, which
may or may not be reported by the study subjects. Over the longer term (years) one

would expect changes in creatinine excretion with changes in body weight, muscle mass,



and age (Welle et al. 1996; Proctor et al. 1999). Because this study had urine samples
from the same subjects over multiple days and during multiple seasons, is there a way to
identify the effect of time in the overall variance of urine creatinine level? How much of
the variation in measured total 24-hour creatinine is explained by the within subject
variation? This objective, then, is to develop a predictive model that best makes use of
this within subject variation and its corresponding covariance structure.

The second objective is to compare the predictions for total 24-hour creatinine
obtained from the model of Objective 1 to the predictions from other pre-existing models
for subjects exhibiting the same characteristics. Other models to be considered include
those from the research of Turner and Cohn (1975), Kawasaki et al. (1991),

Harris et al. (2000), and other more recent predictive models for creatinine levels in

24-hour urine samples.



Other Models to Predict 24-Hour Urinary Creatinine

Twenty-four hour creatinine is used in the monitoring and assessment of kidney
related diseases, in the estimation of age related muscle loss, in dietary and body
composition studies, and in pesticide exposure research. This section gives an overview
of some of the earlier research studies in these arenas and the resultant models that were

used to predict 24-hour urinary creatinine levels.

Turner and Cohn

One of the earliest models to predict 24-hour urinary creatinine was developed by
William J. Turner, M.D. and Stanton Cohn, Ph.D. in 1975. In their investigation of total
body potassium and 24-hour creatinine excretion, Turner and Cohn compared the urinary
creatinine levels for 33 healthy male subjects to the creatinine levels of 31 chronic
schizophrenic subjects (Turner and Cohn 1975).

Each group of subjects provided at least three 24-hour urine samples. Diet was
uncontrolled for both the control group of healthy males and the group of schizophrenic
patients. On the days of collection, weights and heights were recorded between 10:00 am
and 11:00 am on all subjects lightly clothed and without shoes. The control subjects’ ages
ranged from 24 to 66 years, their heights ranged from 160.8 to 193 centimeters, and their

weights ranged from 61.8 to 124.1 kilograms. The schizophrenic subjects’ ages ranged
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from 22 to 65 years, their heights ranged from 162.6 to 192 centimeters, and their weights

ranged from 53.5 to 123.6 kilograms.

Using subject height, weight, and age, Turner and Cohn developed a prediction
equation for 24-hour creatinine for each group of subjects (i.e., one equation for the
healthy group and a second equation for the schizophrenic patient group) and a prediction
equation for total body potassium (for the control group). Their creatinine prediction
equation for the healthy male subjects of the control group was:

CR = 0.0143* height +0.00975 * weight — 0.00734(age — 20) —1.391

where CR was the predicted 24-hour urinary creatinine level (measured in grams), height
was measured in centimeters, weight was measured in kilograms, and age was measured

in years.

Moriyama et al.

Masaki Moriyama, Hiroshi Saito, Atsuhiro Nakano, Shoetsu Funaki, and Saburo
Kojima investigated the effect of dietary protein levels on 24-hour creatinine excretion
(Moriyama et al. 1988). They conducted a field survey on a group of 40 healthy Japanese
adults (22 male, 18 female) living in Akita, Japan. For this study, 24-hour urinary
creatinine excretions and urea-N were measured on each subject once every three months
(on the 20™ day of February, May, August, and November in 1983) for a total of four
times during the year. Urinary urea-N was used as a marker of dietary protein level.

Subjects were not restricted on diet or level of activity. Each subject’s height and

weight also were recorded at these four seasonal times. The mean of the male subjects’
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ages (in years) was 46.6 with a standard deviation (SD) of 7.8 years, the mean height was

166.4 (SD 5.0) centimeters, and the mean weight was 67.1 (SD 12.6) kilograms. The
mean of the female subjects’ ages was 44.5 (SD 8.3) years, the mean height was 152.6
(SD 4.8) centimeters, and the mean weight was 51.6 (SD 5.5) kilograms.

Using multiple regression analysis and the factors of age, height, and weight,
Moriyama et al. built gender specific prediction equations of 24-hour creatinine for each
three month season. They also created a summary measure equal to the average of the
four seasonal measurements and then used this average as the response variable in
building a gender specific prediction equation for a 24-hour creatinine level. For
example, for males, the prediction equation for the average of the four seasonal
measurements was:

CR=211-64%age+?2.5*hheight +18* weight
where CR was the predicted 24-hour urinary creatinine level (measured in milligrams),
height was measured in centimeters, weight was measured in kilograms, and age was
measured in years.

When adding the urea-N measurement, as a marker of dietary protein level, in the
creatinine prediction equation (which already included height, weight and age),
Moriyama et al. found that the differences of creatinine caused by seasonal variability of

dietary protein level to be 9.2% for males and 3.6% for females.



Kawasaki et al.

Another study that used repeated 24-hour creatinine measurements from the same
subject was published by Kawasaki et al. (1991). Three to five days of 24-hour urine
collections were done on 256 male and 231 female healthy subjects with ages of 20 to 84
years. Regression analysis was used to develop an equation to predict the 24-hour
creatinine level. For a male subject, the resultant prediction equation was:

CR=-12.63*age+15.12* weight +7.39* height —79.90

where CR was the predicted 24-hour urinary creatinine level (measured in milligrams),
height was measured in centimeters, weight was measured in kilograms, and age was
measured in years.

Based on their model validation efforts, using 47 non-Japanese subjects,
Kawasaki et al. suggested that their prediction equations also were applicable for

predicting 24-hour creatinine in non-Japanese individuals.

Jones, Newstead, and Will

In 1996, Colin Jones, Charles Newstead and Eric Will conducted a study to
determine if an estimation of creatinine clearance from serum creatinine, gender, age, and
weight would decrease the number of 24-hour urine and dialysate collections needed to
monitor the adequacy of dialysis on patients using continuous ambulatory peritoneal
dialysis (CAPD) (Jones et al. 1997). As part of this study, a prediction of 24-hour
excreted creatinine was needed to derive a creatinine clearance value that was then

compared to the actual measured creatinine clearance value.
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The Jones et al. study included 187 urine collections (for 24-hour periods) from

99 CAPD patients (55 male, 44 female). Collections on the same individual were
separated by at least four months. The data for male and female subjects were analyzed
separately. Using multiple regression analysis, the creatinine excretion prediction
equation for use in this study, for a male subject, was:

CR =60%*(50—age+2*weight)
where CR was the predicted 24-hour urinary creatinine level (measured in umol), weight
was measured in kilograms, and age was measured in years. The predicted values from
this equation were then used to derive creatinine clearance values for the remainder of

their research.

Harris et al.

As noted earlier, the completeness of a urine sample is crucial to accurately
assessing the absorbed dose of pesticides in humans. An incomplete urine sample could
lead to under-estimating the absorbed dosage of the pesticide (Harris et al. 2000). Harris
et al. (2000) developed a predictive model for 24-hour excreted creatinine to use in
identifying incomplete urine collections.

Two consecutive 24-hour urine samples of 98 professional turf applicators (93
male, 5 female), from a previous pesticide dose prediction study (Harris 1999), were
analyzed. The subjects’ creatinine measures were first corrected for any missed urine
voids during either of the 24-hour collection periods. Any missed voids were self

reported by the study participants. The two corrected creatinine values were then
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averaged and a predictive model, using multiple regression, was developed using this

average creatinine value as its response variable. The resultant prediction equation, for
male subjects) was:

CR =647 +372% gender +13.5* weight —10.8 *age —1.47 *[(age — 28.4) * (weight —80.1)]

where CR was the predicted 24-hour urinary creatinine level (measured in milligrams),
gender equaled 1 if a male subject (or O if a female), height was measured in centimeters,
weight was measured in kilograms, and age was measured in years (Harris et al. 2000).
This resultant prediction equation was then used in the analysis of determining the impact

of correcting for missed urine voids in the measurement of pesticide levels.

Tanaka et al.

Salt intake in Japan is higher than in western countries (INTERSALT 1988). It
has been shown that excessive salt intake is a known factor for high blood pressure
(INTERSALT 1988; Elliott 1989). It also has been reported that an increase in potassium
intake may decrease blood pressure (Elliott et al. 1989). Hence, the Japanese government
has set goals for both salt and potassium intake (Japan Health Promotion and Fitness
Foundation 2000).

To aid in the evaluation of salt and potassium intake, 24-hour urine collections are
often used instead of food intake questionnaires (Tanaka et al. 2002). In an investigation
of a method to estimate 24-hour urinary sodium and potassium excretion using casual
urine specimens, Tanaka et al. (2002) developed a model to predict 24-hour urinary

creatinine that was then used in their urinary sodium and potassium excretion formulae.
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The 591 subjects (295 male and 296 female), with ages of 20 to 59 years, for the

Tanaka et al. efforts were randomly selected from a larger data base of subjects from the
INTERSALT study. The INTERSALT study was an international study (across 32
countries) of electrolyte excretion and blood pressure (INTERSALT 1988).

The subjects for the Tanaka et al. study lived in three cities in Japan (Osaka,
Toyama, and Tochigi) during the years of 1987 and 1988. The average age of the male
subjects was 40.0 (SD 11.1) years, the average height was 166.8 (SD 6.7) centimeters and
the average weight was 63.3 (SD 12.6) kilograms. The average age of the female subjects
was 39.0 (SD 11.2) years, the average height was 153.9 (SD 5.6) centimeters and the
average weight was 52.2 (SD 7.1) kilograms. Each subject provided one 24-hour urine
sample.

A regression model was built to predict 24-hour urinary creatinine using the
factors of age, height and weight. The resultant model was:

CR =-2.04*age+14.89 * weight +16.14 * height — 2244 .45

where CR was the predicted 24-hour urinary creatinine level (measured in milligrams),
height was measured in centimeters, weight was measured in kilograms, and age was
measured in years. It is important to note that this model had no indicator variable for
gender. Predicted values from this model were then used by Tanaka et al. to develop

formulae to estimate population mean levels of 24-hour sodium and potassium excretion.
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Kamata and Tochikubo

In 2002, Kumiko Kamata and Osamu Tochikubo studied the estimation of
24-hour urinary sodium excretion using lean body mass and overnight urine collected by
a pipe sampling method. Researchers often use 24-hour urine specimens to assess salt
intake rather than using less reliable methods involving dietary recall by the subjects
(Kamata and Tochikubo 2002).

The Kamata and Tochikubo study included 351 healthy subjects in total (126 men
and 225 women) between the ages of 20 and 70 years. The average age of the men in the
study was 38 (SD 20.3) years, the average height was 169 (SD 7.2) centimeters and the
average weight was 65.0 (SD 8.6) kilograms. The average age of the female subjects was
50 (SD 16) years, the average height was 156 (SD 6.0) centimeters and the average
weight was 52.7 (SD 7.0) kilograms. Body fat was measured using a fat meter.

Study participants were not regulated on their food intake and continued their
normal daily activities during the sample collection period. One 24-hour urine sample
was collected from each participant. A sub group of the study subjects (71 men and 78
women) used the pipe sampling method to collect the overnight urine portion of their
24-hour sample.

The prediction equation for the male subjects in the study was:

CR =0.027* LBM —-0.006
where CR was the predicted 24-hour urinary creatinine level (measured in grams) and
LBM is the lean body mass (measured in kilograms), which was calculated as body

weight minus body fat. This resultant prediction equation for urinary creatinine was then
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used by Kamata and Tochikubo to predict a 24-hour sodium value for the remainder of

their research.

Penie, Porben, and Silverio

In constructing an Index of Creatinine Excretion for Cuban subjects, standards
derived from Anglo-Saxon subjects traditionally were used (Penie et al. 2003). Penie et
al. believed that this practice could lead to diagnostic errors because of differences in diet
and body composition of non-Anglo-Saxon populations.

Cuban subjects for this Penie et al. study were drawn retrospectively from the
databases of the Section of Urinalysis, Service Clinical Laboratory, “Hermanos
Ameijeiras” Hospital in La Habana, Cuba. Fifty-five percent of the Cuban patients in this
database were associated with renal function studies, 20% were associated with arterial
pressure studies, 15% were associated with nutritional evaluations and 10% were
identified as miscellaneous reasons.

For their study, 103 male subjects and 112 female subjects (with ages between 19
and 58 years), were selected. The average age of the male subjects was 40.1 (SD 1.12)
years, the average height was 170.9 (SD 0.75) centimeters, and the average weight was
68.8 (SD 0.69) kilograms. For female subjects, the average age was 37.5 (SD 1.05) years,
the average height was 159.3 (SD 0.58) centimeters, and the average weight was 60.3
(SD 0.63) kilograms.

Penie et al. used regression analysis to derive gender specific prediction equations

for 24-hour creatinine levels. They tested two models; one that only contained age as a
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predictor and a second model that only contained height as a predictor. Their final model,

for male subjects, used only height and is shown here:

CR =-1791.05+17.69 * height

where CR was the predicted 24-hour urinary creatinine level (measured in milligrams)
and height is the subject height measured in centimeters.

Penie et al. noted that after considering the subject’s weight, the urinary creatinine
excretion for Cuban subjects (both male and female) was lower than that of their Anglo-
Saxon counterparts. They recommended that their resultant table of values for urinary
creatinine excretion, from this study, be used in future body composition and nutritional

evaluations of Cuban subjects.

Summary

Table 1 summarizes the models mentioned above. It includes the means and
standard deviations of the ages, heights, and weights of the subjects used in the original
studies. It indicates which studies had repeated measurements for any one subject. It also
includes what factors were included in the resultant prediction equations. It is important
to note that all of these prediction equations for these studies were built using ordinary
least squares regression analysis. If a summary measure (such as a mean of the repeated
measures) was not used as the response variable, then the resultant model was built using

the assumption that any repeated measures for any one subject were uncorrelated.
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Table 1: Summary of Other Models used to predict 24-hour Urinary Creatinine
Level (Male Subjects Unless Otherwise Noted)

Model Predictors Repeated Age (yrs) Height (cm) Weight (kg)
Used Measures
onone  mean,, (SD) mean,,, (SD) mean,,,, (SD)
subject? ’
Harris' gender, Yes (2)  28(7.4)° 178 (7.0) " 80 (12.0)
weight, age
Kamata lean body No 38 (20.3) 169 (7.2) 65 ( 8.6)
mass i
Kawasaki | height, Yes (3-5) 20-84 - N/A N/A
weight, age
Jones age, weight  Yes N/A N/A N/A
Moriyama' | height, Yes (4) 46.6 (7.80) 166.4 (5.00) 67.1 (12.6)
weight, age
Penie height N/A 40.1(1.12) 170.9 (0.75) 68.8 (0.69)
Tanaka height, No 40.0 (11.1) 166.8 (6.70) 63.3 (12.6)
weight, age
Turner & | height, Yes (23) 24-66" 160.8-193 " 61.8-124.1
Cohn weight, age

* For both male and female subjects
** Range of ages and/or heights and/or weights
T Model used the average of the repeated measures as the response.
‘N/A’ indicates information not available
‘SD’ indicates standard deviation




Study Data

Data Collection

The data for this thesis project were collected as part of the NIOSH CDC funded
“Pesticide Dose Monitoring in Turf Applicators” study. This study was approved by the
VCU Institutional Review Board. Lawn care and tree and shrub workers employed by the
TruGreen ChemLawn (part of Service Master Corporation) were the subjects for both the
pilot phase and the follow-on phase of this national study. Participation in the study was
strictly on a volunteer basis.

The initial pilot phase of this study was conducted in Richmond, Virginia in 2003
and consisted of three rounds of collections (one round in the summer, two rounds in the
fall). The follow-on phase was conducted in five locations around the United States
(Puyullap, Washington; Plainfield, Illinois; Plano, Texas; Salt Lake City, Utah; Sterling,
Virginia). The follow-on phase had three rounds of collections: the first round was in the
Spring of 2004, the second round was in the Summer of 2004 and the final round was
completed in the Fall of 2004. Upon completion, there were 21 male subjects who
participated in the pilot phase and 113 subjects (3 female, 110 male) who participated in
the follow-on phase of the study.

For the pilot phase of the study, each subject was asked to collect their individual

urine voids (into one container) for a 12-hour period. Each participant was asked to

17
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repeat this collection process twice a day for five consecutive days (i.e., two 12-hour

collection periods per day for five consecutive days, resulting in ten containers per
subject after the five days). In the fall months of 2003, the same subjects were then asked
to collect their individual urine voids for 24-hour collection periods each day for a
continuous two week period (for a total of 14 consecutive days).

For the follow-on phase of the study, during the spring round of collections, each
subject was asked to collect their individual urine voids into one container for a 24-hour
period. Each participant was then asked to repeat the 24-hour collection process for the
next day. During the summer round of this phase, the same study participants (i.e., those
who had participated in the spring round and additional new hires to TruGreen
ChemLawn) were asked to provide four consecutive 12-hour urine samples (i.e., two
12-hour collection periods per day for two consecutive days). During the fall round of
this phase, the same participants were asked to provide two consecutive 24-hour urine
samples.

In both phases, for a specified collection period (e.g., a 12-hour period or a
24-hour period), each participant was instructed to collect, into one container, all of their
individual urine voids during that time frame. Participants may have occasionally
forgotten to use their container during a specific collection period. This would have
resulted in an incomplete sample for that period. When this occurred, participants were
asked to acknowledge the missed collection and approximate the volume of any ‘un-

captured’ urine voided during the time period in question.
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During any one collection period, a participant’s container was kept in a cooler

with ice packs. This was done to offset any possible degradation in creatinine
concentration caused by temperature extremes (Fuller and Elia 1988). Both the cooler
and the ice packs were provided to the participant by the study’s administering personnel.
After the desired 12-hour or 24-hour collection period was completed, each participant
returned their ‘full’ container to the study administrator. Participants were then given a
new container and ice packs to use for their next collection time period.

Upon return of the ‘full’ collection container, each participant’s 12-hour or
24-hour sample had a specific gravity measurement completed on site, when possible,
using the Leica AR200 digital hand-held refractrometer. Since only one instrument was
available to take into the field, specific gravity measurements were not collected at all
sites due to the overlap in field visit schedules.

All collected urine samples were shipped express overnight to VCU for freezing
and long term storage. Creatinine concentrations were measured by Scientific Testing
Laboratories (STL) in Richmond, Virginia using an automated method based on the Jaffe
reaction. For the pilot phase, collected urine volume and weight were measured at the
Environmental Health Lab at VCU; for the follow-on phase, the collected urine volume
was measured with graduated cylinders in mobile measurement laboratories set up in the
field sites.

Any missed urine voids during a specific collection period were self reported by
the participant on the questionnaire that was returned to the study administrator at the end

of the sampling week. If needed, the urine volume in a particular collection period could
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be corrected by the estimated volumes provided by the participant for any missed voids

that may have occurred during the time period in question.

Actual study questions also were answered by each participant at the end of each
round. Age, body weight, body height, gender, tobacco smoking habits, medical
conditions that affect kidney function, adherence to a protein intensive diet, alcohol
consumption, usage of specific prescription medications, and usage of creatine

supplements were self reported by each participant.

Data Calculations

Using the creatinine concentration level and the total urine volume collected in a
container, the total creatine level for a 24-hour period was computed using

24-hour total creatinine =

creatinine concentration (24.nour) (mg/dL) * urine volume (24.poury (mL) * 1/100.
Similarly, the total creatinine level for a 12-hour period was computed using

12-hour creatinine =

creatinine concentration (12-nour) (mg/dL) * urine volume (12-hour) (mL) * 1/100.
If the collection period time frame was two consecutive 12-hour collection periods, then
the 24-hour total creatinine for any one day was computed as

24-hour total creatinine =

12-hour creatinine (first 12 hour period) + 12-hour creatinine (second 12 hour period)
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If only one of these two 12-hour creatinine values were available, at the direction of the

study’s primary investigator, the missing 12-hour creatinine value was imputed. See
Appendix 1 for details.
Body Mass Index (BMI) was calculated using the formula (Boeniger et al. 1993):

weight

BMI = >
height

where weight is expressed in kilograms (1 kilogram = 2.2 pounds) and height is

expressed in meters (1 meter = 39.37 inches) (Selby 1975).

Participant Enrollments and Descriptive Statistics

Each round of the pilot phase and the follow-on phase of the study had a differing
number of participants who actually enrolled and completed at least one collection period
in the round. Table 2 indicates the number of subjects by city and round. This table does
not reflect any missed urine samples from the participants within any one phase. A
missed sample within a round would be considered missing data (Vonesh and Chinchilli
1997). Changes in enrollments for each season are due to recruiting of newly hired
participants. The seasonal differences of completed versus enrolled are due to the
inability to collect data for a specific season (e.g., Plainfield in the fall of 2004) and/or
individuals not participating in the study because they were no longer employed by
TruGreen ChemLawn. This thesis project does not probe into modeling the dropout

process.
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Table 2: Study Enrollments by Location and Phase

Final
Pilot Number Summer Fall Round 1 Fall Round 2
Phase City | Subjects completed/enrolled completed/enrolled completed/enrolled
Enrolled
Richmond 21 21/21 16/21 16/21
Final
Follow-on | Number Spring Summer Fall
Phase City | Subjects completed/enrolled completed/enrolled completed/enrolled
Enrolled
Sterling 33 29/31 19/31 22/33
Plano 14 14/14 14/14 14/14
Puyallup 19 13/13 17/17 13/19
Salt Lake 27 22/22 19/27 15/27
Plainfield 20 20/20 16/20 No data collected
Follow-on
Phase 113 98/100 85/109 64/93
Totals

The NIOSH CDC “Pesticide Dose Monitoring in Turf Applicators” study
encouraged and accepted both male and female study participants. Of the 134 total
participants in the study, there were only three female subjects (all of whom were in the
follow-on phase). Due to such a small number of females in the overall study, the
decision was made to use only the male participant data for this thesis project.

It also was decided to use the follow-on phase data as the model building set and
the pilot phase data as a model validation data set. For each of the 21 subjects in the pilot
phase of the study, up to 19 days of 24-hour creatinine measurements were possible; this
would have resulted in a total number of possible observations of 399. Of the 399
possible, 108 observations were missing valid creatinine levels and another 16

observations did not have weight and/or height measurements associated with them. The
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end result was 275 observations that had creatinine values, heights and weights and thus

were potential candidates to generate a random sample of model validation records.

There were up to six creatinine measurements possible for each of the 110 male
subjects in the model building data set (for a total number of 660 possible observations).
Of the 660 possible, 186 observations did not have a valid 24-hour creatinine level and
another 17 observations did not have weight and/or height measurements associated with
them. The end result was 457 observations that had creatinine values, heights and weights
and thus were usable in the model building phase.

The technique used for selecting the sample of model validation records and the
associated descriptive statistics for the resultant model validation dataset are described
later in the Model Validation section. Descriptive statistics for the male participants in the

model building set are shown here in Table 3.

Table 3: Descriptive Statistics for Model Building Data

N Mean Std Dev Min Max
Creatinine (mg/day) 457 1609.000 582.005 196.115  3929.000
Height (cm) 457 179.540 6.552 162.560 198.120
Weight (kg) 457 90.680 21.611 52.163 188.241
BMI (kg/m?) 457 28.013 5.696 18.654 49.502
Age at Collection (yrs)” 453 33.651 9.235 18.000 60.000

"Of the 457 observations with valid creatinine, height, and weight values, only 453
observations included a subject’s age at time of urine collection.



Model

Methodology

In both phases of this study, multiple measurements of each participant’s total
24-hour creatinine levels were taken over 2-3 growing seasons. Observations stemming
from repeated measurements on the same subject will most likely be correlated (Khattree
and Naik 1999). Hence ordinary least squares regression, which assumes each
observation is uncorrelated with the other observations, is not an appropriate technique to
be used for this analysis.

There are two methods for accommodating correlated data — generalized
estimating equations (GEE) and random effects models (Vittinghoff et al. 2005).
Vittinghoff et al. suggest using generalized estimating equations when there are a large
number of subjects and relatively few time points. Vittinghoff et al. also cited that GEE is
limited in that “it is restricted to a single level of clustering, it is not designed for
inferences about the correlation structure, and it does not give predicted values for each
cluster.”

Complicating this analysis is that the data collected are unbalanced. Unbalanced
data occurs when the number of observations in the cells (where a cell is defined by one
level of each factor) is not equal (Searle 1987). Table 2 demonstrated why the data for

this study may be considered to be unbalanced. The varying number of participants

24



25
enrolled and completing the study in each season would yield an unequal number of

observations for a specific time period. It also is appropriate to note that the urine
collections, for the follow-on phase, were not equally spaced chronologically across all
locations. The lapse in time (measured in days) between the spring and summer rounds
(as well as between the summer and fall rounds) was not the same across all locations in
the follow-on phase. This also causes the data to be unbalanced (Vonesh and Chinchilli
1997).

Considering the unbalanced nature of the data and the goals stated in Objective 1,
a Mixed Model methodology was used to fit a model to predict creatinine level and to
determine the within subject variation. Age at time of collection, body height, body
weight, Body Mass Index (BMI), tobacco smoking habits, medical conditions that affect
kidney function, protein intensive diets, alcohol consumption, prescription medications,
and usage of creatine diet supplements were considered as possible explanatory factors
for this model. These factors were self reported by the subject at the start of each round;
hence all of these factors are time varying factors (Khattree and Naik 1999).

The mixed model in matrix notation (Khattree and Naik 1999) can be written as:

Yi= Xi,B+Zivi +&;

where: i = 1,2,....n
n = number of subjects
Di = number of measurements made on the /™ subject

q = number of fixed effects
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V; =
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number of random effects

the p; x 1 vector of repeated measures on the i subject

the known p; x ¢ matrix of constants that describe the structure of
the study with respect to fixed effects (including treatment design,
regression explanatory or predictor variables) for the i"™ subject
(Littell et al. 2006).

the fixed g x 1 vector of unknown parameters

the known p; x r matrix of constants that describe the study’s
structure with regard to random effects (including blocking design
and explanatory variables in random coefficient designs) for the i
subject (Littell et al. 2006).

the r x 1 vector of random effects for the i"™ subject

the p; x 1 vector of random errors for the i" subject

Expected values, variances, and covariances of these matrices / vectors are shown

here (Khattree and Naik 1999):

E(v)=0;

E(g)=0;

E(v)=0;

Fori#j:

Var( v;) = 0’G; (where G; is the covariance matrix of the random
effects)

Var( &) = 0°R; (where R; is the covariance matrix of the repeated
measures on subject /)

E(g)=0;

Cov (¥, V) =0; Cov(eg, g)=0; Cov(v,§)=0



27
Cov(v,g)=0; Cov(v,e=0

G, 0 0
) G, 0
Var(v)= 0°G where G = : :
0 O G,
R, O 0
5 R, 0
Var(¢)=0°R where R = : :
0 O R

Due to the random vectors v and £in this mixed model, there are two possible
distributions to consider -- the conditional distribution of (Y |v) and the marginal
distribution (Y) as shown here (Littell et al. 2006):

EY |W=XB+Zv,Var(Y |v) = 6°R

E(Y) = Xf, Var(Y) = 6’[ZGZ' + R]

By using the mixed model approach, it is possible to obtain insight into the within
subject variation, over time, for the total 24-hour creatinine level. The within subject
variation for subject i would be contained in the R; covariance matrix referenced in the
mixed model description shown above. The potential explanatory factors of age, height,
weight, BMI, etc. are placed in the matrix of constants that describe the structure of the
study with respect to fixed effects (i.e. the X; matrix). No explanatory factors are placed
in the model in the matrix of constants that describe the study’s structure with regard to

random effects (i.e., the matrix Z;= 0). Hence, for this study’s model, vis a zero vector,
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G is a zero matrix, no random effects will be estimated, and the variation will be modeled

through the R matrix.

Covariance Structure Selection

A key element in this analysis was to identify the covariance structure of the
within subject variation (matrix R;). Inadequate modeling of the covariance structure
would result in biased estimates of variances of estimates of fixed effects (Littell et al.
2006). Potential correlation of the repeated measurements of the 24-hour creatinine level
for one subject had to be investigated. To perform this investigation, several covariance
matrix structures, typically used for analysis of repeated measures data, were considered.
These included the unstructured, compound symmetric, first-order autoregressive,
Toeplitz, ante-dependence, and spatial matrix structures (Jenrich and Schluchter 1986;
Littell et al. 2006). The details of these covariance matrix structures and how they differ
from an independent covariance structure may be found in Appendix 2.

To determine which covariance structure best fit the data, an approach similar to
what is outlined by Wolfinger (1993) was utilized. Models, that included all possible
fixed factors, using each of the potential covariance matrix structures, were generated
using release 9.1.3 of the SAS® statistical software package (SAS Institute, Inc. 2003).
The SAS code for these models may be found in Appendix 3. The results from these six
covariance approaches (found in Appendix 5) were compared using lag time plots,

likelihood ratio tests, and information criteria.
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A lag time plot shows covariance as a function of lag time between pairs of

observations. This plot shows if, over time, the covariances are constant or if they are
decreasing (or increasing). Lag is calculated as equal to one for measurements that are
adjacent to each other [i.e. for the i and the (i + 1)™ measurement]; a lag of two is
assigned for measurements two time units apart [i.e. the i"™ and the (i + 2)™ measurement],
etc. The covariance estimates versus lag in time when the unstructured covariance matrix
is used for the model building data are shown in Appendix 4; the plot is below in

Figure 1.

Covariance Estimates
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Figure 1: Lag Plot from Unstructured Covariance Matrix Results
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The plot in figure 1 suggests that as lag increases, the covariance estimates tend to flatten

out. This would suggest that a compound symmetric covariance approach, where the
correlation between the ™ and j™ time is constant for a subject (Littell et al. 2006), may
be appropriate.

The second step in the comparisons used likelihood ratio tests of the model under
one covariance structure versus the same model under the unstructured covariance
matrix. The appropriate likelihood ratio test statistic for the null hypothesis H,: R; has a

specific covariance structure is:

max (likelihood | data)
L — __2 ln underHo
max (likelihood | data)

unstructured

where maximum likelihood is derived from the Maximum Likelihood (ML) method
(Khattree and Naik 1999). When n is large, under the null hypothesis, this test statistic
approximately follows a y distribution with degrees of freedom = number of unknown
parameters in the unstructured covariance matrix minus the number of unknown
parameters in the covariance matrix specified in the null hypothesis (Khattree and Naik
1999).

The likelihood ratio test statistic for a null hypothesis of independent covariance
matrix structure versus any of the other covariance structures considered was calculated
by SAS; in all cases, this null hypothesis was rejected and it was concluded that the
independent covariance matrix structure was not appropriate. Table 4 indicates the results
of the likelihood ratio tests comparing the other covariance structures to the unstructured

case.
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Table 4: Likelihood Ratio Tests for Covariance Matrix Structures

Likelihood Ratio Test Unknown Test xz Critical  Conclusion
Parameters Statistic Value”
Value

H,: R; is Compound Symmetric CS=2 24.1 ¥’ 10=30.14 Do Not
Hy: R; is Unstructured UN =21 Reject H,
H,: R; is Autoregressive AR =2 76.5  y*=30.14 Reject H,
H,: R; is Unstructured UN =21

H,: R; is Toeplitz TP=6 20.7 X215= 25.00 Do Not
H,: R; is Unstructured UN =21 Reject H,
H,: R; is Ante-Dependence AN=11 60.5 ¥’ 10=18.31 Reject H,
Hj,: R; is Unstructured UN =21

H,: R; is Spatial SP=2 77.9 X219= 30.14 Reject Hy
Hj: R; 1s Unstructured UN=21

*Level of Significance of o= 0.05

The likelihood ratio tests suggest that, of the covariance structures considered, the
compound symmetric approach and the Toeplitz approach are the most favorable
candidates. However, as noted by Littell et al. (2006), the Toeplitz covariance structure is
appropriate only when the repeated measurements are equally spaced chronologically.
While it is true that the measures within one round were equally spaced (i.e., equal to a
one day lapse in time across all locations), the lapse in time between rounds was not the
same for all locations. Hence selecting the Toeplitz covariance structure over the
compound symmetric structure, based on this likelihood ratio test, is deemed unwise.

There are three information criteria that may be used to identify which co-

variance matrix is best (Littell et al. 2006). They are the Akaike Information Criterion
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(AIC), the finite-population corrected criteria developed by Burnham and Anderson

(Burnham and Anderson 1998) also known as the AICC, and the Schwarz’s Bayesian
Information Criterion (BIC). The calculations for these information criteria may be found
in Appendix 6. The model (and hence the covariance structure used for it) that minimizes
AIC or BIC is preferred (Littell et al. 2006).

Table 5 shows the information criteria for each of the covariance structures tested.

Table 5: Information Criteria Results for Covariance Matrix Structures

Approach -2* Log AIC AICC BIC
Likelihood
Unstructured 7100.8 7244.8 7271.0 7439.3
Compound Symmetric 7124.9 7230.9 7244.5 7374.0
First Order Autoregressive 7177.3 7283.3 7296.9 7426.4
Toeplitz 7121.5 72355 7251.4 7389.4
Ante-Dependence 7161.3 7285.3 7304.3 7452.7
Spatial 7178.7 7284.7 7298.4 74279

Looking at this table, the compound symmetric approach represents the minimum value
for each of these criteria and hence would be the covariance matrix of choice using these
criteria.

Lastly, Figure 2 shows a graphical comparison of the covariance estimates versus
lag in time for the unstructured (UN), compound symmetric (CS), first order
autoregressive AR(1), Toeplitz (TOEP), and ante-dependence (ANTE) covariance
approaches. (The covariance estimates for these approaches may be found in
Appendix 4.) This graph suggests that the compound symmetric approach for the within
subject errors is appropriate because it tracks closest to the covariance estimates from the

unstructured approach.
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Covariance Estimates
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Figure 2: Lag Plot Comparison of Covariance Matrix Structure Approaches

Based on the graphical, likelihood ratio, and information criteria comparisons,
and the fact that the repeated measurements were not equally spaced chronologically
(hence, despite its likelihood ratio test result, the Toeplitz structure is not appropriate), it
was decided that the compound symmetric covariance structure was the most appropriate

covariance matrix structure to use in the ensuing model building effort.

Determination of Model Predictor Factors
To build the 24-hour creatinine model for this study, the MIXED procedure of the

statistical software package SAS® (release 9.1.3) was used. Under the assumption of joint
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multivariate normality for the random effects (V) and the error term (&) in the mixed

model, this procedure uses the Restricted Maximum Likelihood (REML) methodology
(as its default) to estimate the covariance parameters (i.e., the G and the R matrices)

(Khattree and Naik 1999). As shown in Appendix 7, the covariance parameter estimates

(é and R ) can then be used to obtain the fixed effect estimates via generalized least
squares estimates (Littell et al. 2006).

A backwards elimination technique outlined by Kutner et al. (2005) was used to
actually build the model. Beginning with a model containing all potential predictor
variables, the predictor with the largest p-value was identified. If this ‘maximum’ p-value
was greater than a predetermined value (in this case 0.05 was used), the predictor variable
was dropped from the model. A new model containing all the predictor variables (except
the one that was dropped) was then built. The process of identifying the predictor with
the largest p-value and checking the p-value against the predetermined value was
repeated until only those variables with a p-value less than the predetermined value
remained.

As noted earlier, the potential explanatory factors of age, height, etc. were placed
in the matrix of constants that describe the structure of the study with respect to fixed
effects (i.e. the X; matrix in the mixed model). The test statistic used for the p-value
comparison in the backwards elimination was the resultant F-test statistic from the
Type 3 test for the fixed effects. Based on the earlier covariance structure analysis, the
compound symmetric structure was used for this model. The Kenward-Roger correction

for the denominator degrees of freedom (Kenward and Roger 1997) for the Type 3 F-test
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statistic was used to handle the possible bias introduced by using this non-independent

covariance structure (Littell et. al 2006).

Location was not included in the initial model. As shown in Appendix 8, profile
plots of 24-hour creatinine level, by location and day of measurement, did not show any
trends by location and therefore did not provide any reason to suspect there was a
location effect on the creatinine measurements. A multiple comparison of the mean
creatinine measurements, by location, and box plots of creatinine measurements, by
location, confirmed that there were no differences due to location.

The results for the initial model (with all possible predictor variables in it) may be
found in Appendix 9. Predictor variables such as height, weight, BMI, and age at time of
collection are considered to be covariates in the model. Predictor variables, to indicate
that the subject is a smoker, takes a prescription medication, has a medical condition, etc.,
are represented as classification variables in the model. Based on the study questionnaire
completed by the subjects, there are up to three possible levels for these classification
variables: a value of ‘0’ implies a negative response, a value of ‘1’ implies a positive
response, and a value of ‘9’ implies ‘no response.’

Possible interaction terms also were included in this initial model. However few
interaction terms could be assessed by the software due to the sparseness of the data. The
only non-sparse interactions included the kidney disease*kidney medicine interaction, the
high blood pressure*blood pressure/ cholesterol medicine interaction, the

diabetes*diabetes medicine interaction and the diet*Atkins diet interaction.
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The final fitted model included the predictors of Body Mass Index, height and the

classification variables for diabetes, for allergies, for a medical condition that affects
kidney function (e.g., high blood pressure, glomerulonephritis), for the usage of a
creatine supplement and for the taking of an anti-inflammatory medication. These results,
along with the estimates for the fixed effects in the model, may be found in Appendix 10.
(The SAS code for the final model may be found in Appendix 11). None of the
interaction terms remained in the final model. The final model may be expressed as:

creatinine = —2457.5515+37.6721*BMI +13.3569*height + diabetes + allergies +

medcondition + creatine_supp + anti_inflammatory

where: BMI = Body Mass Index (kilograms per squared meter)
height = subject height (in centimeters)
diabetes = -496.5500 if subject had diabetes
allergies = -1135.3851 if subject did not have allergies
= -1430.2188 if subject had allergies
medcondition = 1893.0083 if subject did not have a medical

condition that affected kidney function
= 1877.4174 if subject did have a medical condition

8.2967 if subject did not use creatine supplements

creatine_supp
= -517.7042 if subject did use creatine supplements
anti_inflammatory = -599.3979 if subject did use an
anti-inflammatory
Due to the compound symmetry, the intra-class correlation coefficient, which is

the correlation between any two measures on the same subject, may be calculated as
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loF o ) . . .
= , where o is equivalent to the covariance between any two

5

o’ oi+o0;
measures on the same subject and ¢} is the residual variance component (Littell et al.

2006). In the final model’s SAS output found in Appendix 10, o¢ is labeled as

covariance parameter ‘CS’ (and is equal to 148567) and o} is labeled as covariance
parameter ‘Residual’ (and is equal to 146147). Hence, this covariance structure gives an

estimate for the error variance of 6> = 0} + 0, =294714 and an intra-class correlation

coefficient of p=0.5041.

Residual Analysis and Influence Diagnostics

Residuals are used to examine both model assumptions and to detect possible
outliers (Schabenberger 2004). To validate the assumptions for the error term, a residual
analysis was performed on the residuals emanating from the final model.

For the mixed model, there are marginal residuals and conditional residuals.

Schabenberger (2004) defines the marginal residual (r,.) as “the difference between the

mi

observed data and the estimated marginal mean (r,, =y, — xfﬂA ), and a conditional
residual (r,;) as the difference between the observed and the predicted value of the

observation (r, = y, — x,3— zV ).” He notes that in a mixed model without random

effects, which is the model used by this thesis, the marginal and conditional residuals are

the same (Schabenberger 2004).
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Though calculated by the SAS® software, the raw marginal residuals, (r ), are

not well suited to examine mixed model assumptions because their variances could differ
(Schabenberger 2004). Studentized residuals address this unequal variance concern by
dividing a raw residual by an estimate of its standard deviation (Schabenberger 2004).
Studentized residual plots may be found in Appendix 12. A review of these plots
suggested there were no violations of the assumptions surrounding the error term

&~ Normal(0,R).

Using a yardstick of +2.0 (Schabenberger 2004) for the Rstudent values (where
Rstudent values are the externally studentized residuals), 23 observations were flagged as
potential outliers (spanning 13 subjects). A review of these subjects’ data indicated that
five subjects acknowledged missing the collection of one or more voids for that day. The
seven observations for these five subjects are flagged with an ‘m’ in the table of possible
outliers found in Appendix 13.

Leverage values also were examined and sixteen observations were considered
high leverage points (see Appendix 13). In a mixed model setting, leverage values should
be not be interpreted as a measure of how unusual observations are in the original
regressor space, but in terms of how unusual they are in the transformed space for the
mixed model (Schabenberger 2004). However, it was noted that two of the suspected
outliers (Subject 28 day 3 and Subject 127 day 4) did have the maximum values for two
of the predictor variables (height and BMI respectively).

The influence diagnostics available in SAS® release 9.1.3 are considered

experimental. There are two approaches (non-iterative and iterative) implemented by
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SAS for calculating these diagnostics. Both are based on the concept of removing one or

more observations from the analysis, computing new estimates for the model parameters,
and then comparing the ‘full’ and ‘reduced’ data estimates to determine how much
influence the observation(s) exerted on the analysis (Schabenberger 2004). The non-
iterative approach holds the covariance parameters fixed and only re-calculates the
estimates for fand o’ (Littell et al. 2006). The iterative approach re-computes the
covariance parameters as well as the estimates for fand o (Littell et al. 2006). The
iterative approach is recommended (Schabenberger 2004; Littell et al. 2006) and it was
the approach used for the final model.

Another feature available with the SAS influential diagnostics is the ability to
remove, from the ‘full data set,” more than one observation at a time. One can remove a
set of observations (e.g., all the observations for one subject) and then calculate the
influence diagnostics for that set of observations (as one unit). This study focused on the
single observation influence diagnostics only. These diagnostics may be found in
Appendix 14 and are described below.

For a linear mixed model using the REML method, the Restricted Likelihood
Distance (RLD) is used as a measure of overall influence (Cook and Weisberg 1982).
The RLD is calculated by removing an observation (or multiple observations) from the
‘full data set’, computing the parameter estimates for the ‘reduced data set,” and then
assessing the height of the original restricted likelihood surface at the deleted data

parameter estimates (Littell et al. 2006).
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A plot showing the RLD measures for the observations in the final model analysis

may be found in Appendix 14. This plot indicates that four of the observations for subject
45 (days 1, 3, 4, and 6), three observations for subject 63 (days 3, 4, and 6), and day 5 for
subject 132 are all considered highly influential by this measure.

The DFFITS statistic was examined to determine the effect an observation had on
the fitted values (Schabenberger 2004). The plot, also in Appendix 14, indicates that the
day 3 and day 4 measures for subjects 45 and 63 had a large influence on the fit of the
model. The Cook’s Distance measure also was examined. The plot of Cook’s Distance by

observation (in Appendix 14) indicates that day 3 and day 4 measures for subjects 45 and
63 had a large influence on the fixed effect parameters ( ﬁ ).

Lastly, examination of the COVRATIO values was done to assess influence on
the precision of the estimates (Littell et al. 2006). A plot of these values may be found in
Appendix 14. A COVRATIO value of 1.0 implies no influence on the precision of the
estimates, a value larger than 1.0 indicates increased precision for the ‘full data’
estimates, and a value less than 1.0 indicates higher precision for the ‘reduced data’
estimates (Littell et al. 2006). Because their COVRATIO values were much larger than
1.0, the day 3 and day 4 measures of subjects 45 and 63 were flagged as increasing the
precision of the estimates.

As noted by Schabenberger (2004), the “goal of influence analysis is not
primarily to identify observations for deletion, but rather to determine which cases are
influential and the manner in which they are important.” Using the table of outliers found

in Appendix 13 and the influence diagnostics in Appendix 14, it is possible to identify
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suspicious subject creatinine measurements and thereby identify potential misreported

urine collections.

Model Validation

Validation of the final model was done using a subset of the pilot phase data
(from Richmond, Virginia). The pilot phase data, like the data used to build the model,
consisted of three rounds. The first round was five consecutive days with two 12-hour
collections for each of the five days. The second and third rounds (several months later)
consisted of 24-hour collection periods for two consecutive one week periods (resulting
in a total of seven days for round two and the next seven days for round three).

As noted earlier, the model building data were from the follow-on phase of the
study. The follow-on phase had three rounds of collections and the start of each round
was separated by several months. However, only two consecutive days of collections
existed in each round of this phase.

To create a model] validation data set from the pilot phase data that closely
resembled the lapses in time between the three rounds of the follow-on phase, days one
and two from round one were included in the validation data set. The first two days from
round two were also included in the validation data set. From the seven days in the third
round, one day was selected at random (day i); both day i and day (i + 1) were then
included in the validation data set. Figure 3 shows which days of the pilot phase data

were included in the validation set.
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Start Start Start
Round Round Round
1 2 3
Day 1 2 3 45 6 7 8 9 10 11 12] 13 14 15 16 17 18 19
X X X X X X

Figure 3: Days of Pilot Phase used in Validation Data Set

An ‘X’ denotes day was included in the validation data set. Day 15 was the randomly
selected day from Round 3 (i.e., day i = day 15).

For the 21 subjects in the pilot phase of the study, a maximum of 126

observations in the validation data set were possible. Of the possible observations, 91 had

valid creatinine values, heights, and weights and thus were usable in the model validation

phase. Table 6 shows the descriptive statistics for the model validation observations.

Table 6: Descriptive Statistics for Model Validation Data

N Mean Std Dev Min Max
Creatinine (mg/day) 91 1720.000 612.038 472.640  3305.000
Height (cm) 91 179.865 5.529 170.180 193.040
Weight (kg) 91 91.646 14.808 72.575 134.717
BMI (kg/m?) 91 28.279 4.113 23.571 40.281
Age at Collection (yrs) 91 32.538 5.502 25.000 48.000

Predicted 24-hour creatinine values, using the final model’s parameter estimates,

were calculated for each observation in the model validation data set. A comparison of

the linear association between the predicted and actual 24-hour creatinine values (using

the correlation coefficient) was done for both the model building data set and the model

validation data set.
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The hypothesis tested was Hy: facruat predictea = 0 versus Ha: Pucruat predictea # 0,

where Oucual predicred 15 the population correlation coefficient for the predicted and actual

n—2
1—r?

actual, predicted

creatinine values. A test statistic of r

actual predicted ’

WhETe Tucrual prediciea 15 the sample correlation coefficient for the predicted and actual
values, has a ¢ distribution with n-2 degrees of freedom (Anderson et al. 1993).

For the model building data, rucual predicea Was equal to 0.42763; for the model
validation data, rucuaipredicea Was slightly lower with a value of 0.32169. It was concluded
that both of these correlation coefficients were significantly different from zero, as the
null hypothesis that Pucruai predicea Was equal to zero was rejected for both the model
building data (with a p-value < 0.0001) and for the model validation data (with a p-value
of 0.0019).

A plot of the observed 24-hour creatinine values versus the predicted creatinine
values, for both data sets, is shown in Figure 4. If a model predicted accurately 100% of
the time (i.e., the predicted value was equal to the actual value for all observations), then
one would expect the points on a scatter plot of predicted values versus actual values to
fall along a straight line whose slope is equal to 1 and whose y-intercept is the origin. The
plot in Figure 4, along with the correlation coefficients for predicted versus actual
creatinine values, suggests that the model’s predictive behavior for the validation data is

similar to its predictive behavior from the model building data.
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Model Comparisons

The initial step for the model comparisons was a review of the participant age,
height, and weight information for the studies mentioned earlier in the literature review of
this thesis. As shown in Table 1 and Table 3, the ages of the male study participants for
the NIOSH-CDC study are in the same range as the ages of participants from these earlier
studies.

Applying Chebyshev’s Theorem, where at least 75% of the items in any data set
are within =+ 2 standard deviations of the mean (Anderson et al. 1993), comparisons of the
studies’ subject heights and weights were done. As shown in the interval plots found in
Figures 16 and 17 in Appendix 16, the range of heights and weights of the NIOSH-CDC
study participants are similar to those from the Turner and Cohn (1975) and Harris et al.
(2000) studies. The range of heights and weights of the participants in the Moriyama et
al. (1988), Kamata and Tochikubo (2002), Tanaka et al. (2002), and Penie et al. (2003)
studies are slightly lower than those for the NIOSH-CDC study participants.

Next, the models by Turner and Cohn (1975), Moriyama et al. (1988), Kawasaki
et al. (1991), Harris et al. (2000), Tanaka et al. (2002), and Penie et al. (2003), and their
parameter estimates, were used to calculate predicted values for the model building data
set from the NIOSH-CDC “Pesticide Dose Monitoring in Turf Applicators” study. The

models of Kamata and Tochikubo (2002) and of Jones et al. (1996) were not included in
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this comparison due to the unavailability of subjects’ lean body mass measurements (for

the Kamata model) and due to all of the original study’s subjects being CAPD patients
(for the Jones model). A comparison of the other models’ predictive capabilities versus
the predictive capability of the model developed for Objective 1 of this thesis was
performed.

Some of the earlier models were built using a single measurement of creatinine
for each subject (e.g., Tanaka et al.). A few of the other earlier models (Harris et al.,
Turner et al., Kawasaki et al., Moriyama et al.) had repeated creatinine measurements for
the same subject over time. The Harris et al. and the Moriyama et al. models first
aggregated the observations for one subject into a summary measure (e.g., mean) and
then used this summary measure for the response variable.

All of the models mentioned above used an ordinary least squares regression
approach in their model building process. This approach assumed that the creatinine
measurements (even if there were multiple measurements for the same subject) were
uncorrelated and had a constant error variance. Vonesh and Chinchilli (1997), Khattree
and Naik (1999), Vittinghoff et al. (2005), and Littell et al. (2006) note that repeated
measures, taken on the same subject over time, very often are correlated. Hence, using an
ordinary least squares model, in this situation, and its assumption of uncorrelated
observations for one subject would not be appropriate.

In contrast, the model built for Objective 1 of this thesis identified the covariance
structure for the repeated measures data of this study to be compound symmetric and

therefore took into account that the observations for each subject were correlated. Usage
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of this covariance structure also allowed the estimation of both the within subject

covariance and the intra-class correlation coefficient (for the repeated measurements on
the same subject).

To compare the predictive capability of the regression models (that assumed the
uncorrelated observations) to the model developed for Objective 1 (that used a covariance
structure that allowed observations within each individual to be correlated), the mean

squared prediction error (MSPR) was calculated. MSPR is calculated by:

2. (y; ")A’i)z
MSPR=|2—— |,
n*

where y; is the value of the response in the i" validation case, § ; 18 the predicted value

of the i"™ case based on the existing regression model, and n* is the number of cases in the
‘validation data set’ (Kutner et al. 2005). For this comparison effort, the ‘validation data
set’ in the above MSPR definition is the model building set for this NIOSH-CDC study.

The SAS code for calculating the predicted values ( y; ) for each comparison model is

found in Appendix 15. If this MSPR is close to the Mean Square Error (MSE) of the
regression model derived from the original model building data set (used by Kawasaki,
Turner, or whomever), then the MSE for the original model is not seriously biased and it
gives an appropriate indication of the original model’s predictive ability (Kutner et
al. 2005).

Using the NIOSH-CDC model building data that were used in Objective 1 of this
thesis, MSPR values were calculated for the fitted values emanating from the regression

models by Turner and Cohn (1975), Moriyama et al. (1988), Kawasaki et al. (1991),
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Harris et al. (2000), Tanaka et al. (2002), and Penie et al. (2003). MSPR was also

calculated for the model built for Objective 1. The MSE values for the original regression
models built by Kawasaki et al., Turner et al., etc. were not published, hence making the
comparison of their MSPR values to their original MSE values impossible. However, an
ordering of the MSPR values is possible and an ordered list (in descending order) of the
MSPR results is shown in Table 7.

The model, listed as ‘Objective 1 Revised,” was developed using the model
building data set from the NJOSH-CDC study data. It was fitted using the REML method
for a mixed model and a compound symmetric covariance structure. The Kawasaki,
Moriyama, Tanaka, Harris, Turner, and Penie models listed in this table did not have data
for all of the potential predictors (e.g., to indicate usage of creatine supplements, having
allergies, etc.) available for their study subjects as did the final model for Objective 1.
The model listed as ‘Objective 1 Revised’ was built to illustrate the predictive
performance of a model using a compound symmetric covariance structure with only the
same predictors that the comparison models had available to them at the time of their
studies (i.e., subject height, weight, and age at collection).

Intuitively, a smaller MSPR is better. The MSPR provides a model specific
summary measure of the model’s ‘error in prediction’ for all of the applicable
observations in the NIOSH-CDC study model building data set. From Table 7, it is clear
that the model developed for Objective 1 has the smallest MSPR for this NJOSH-CDC

study data.



Table 7: MSPR Results for Models
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Model Predictors Used MSPR using the
NIOSH-CDC
Study Data
Kawasaki height, weight, age 658860
Moriyama height, weight, age 542089
Tanaka height, weight, age 430680
Harris gender, weight, age 429227
Turner height, weight, age 426030
Penie height 393139
Objective 1 Revised | height, BMI" 289638
Objective 1 Model height, BMI*, diabetes, creatine 279184

supplement, anti-inflammatory, medical

condition, allergies

"Body Mass Index (BMI) was calculated from height and weight.

A second measure to assess the predictive capability of these published models,

versus the predictive capabilities of the model from Objective 1 was the correlation

coefficient between the predicted creatinine values and the actual creatinine values for the

NIOSH-CDC study model building data. Table 8 displays the correlation coefficients for

these models. This table indicates that the model from Objective 1 has the largest

correlation between the predicted creatinine values and the actual creatinine values.

Therefore, both the correlation results and the ordering of the MSPR measures suggest

that the model built for addressing Objective 1 has better predictive capabilities of a

24-hour creatinine level than the other models listed.
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Table 8: Correlation Coefficients (Facruaipredicea) for Predicted and Actual Creatinine
Values by Model

E3

Model Tactual predicted
Harris 0.17906
Penie 0.20921
Turner 0.35315
Kawasaki 0.36488
Tanaka 0.36544
Moriyama 0.37827
Objective 1 Revised 0.37875
Objective 1 Model 0.42763

“In testin 8 Ho: Puctuaiprediciea = 0 versus Ha: Pactualpredgiciea # 0, all are significantly different
than zero at a level of significance of o= 0.05 (p-value <0.0001).



Conclusions

Creatinine is a metabolic waste product, removed from the blood by the kidneys,
and excreted in the urine. The measurement of creatinine is used in the assessment and
monitoring of many medical conditions as well as in the area of pesticide research where
the ‘completeness’ of the urine collections is instrumental to the analysis of the absorbed
dosage of pesticide. If complete urine samples were not provided by study participants,
the absorbed doses of pesticide will be underestimated. Hence, the ability to identify
potentially ‘incomplete’ or suspect urine samples, is extremely important in this type of
research. By identifying potential outliers and influential data observations, statistical
models to predict 24-hour creatinine can be used to help identify suspicious urine
samples provided by pesticide study participants.

As noted earlier in this thesis, numerous studies have been conducted and there
are multiple statistical based models that can be used to predict 24-hour urinary creatinine
levels. The models investigated for this thesis share a common ground in that they were
all developed using a ordinary least squares regression approach. A key element of this
approach is the assumption that the observations used to build the model are uncorrelated.
However, many of these studies had repeated creatinine measurements for each of their
subjects. As noted earlier by Khattree and Naik (1999), Vittinghoff et al. (2005), and

Littell et al. (2006), repeated measures on the same subject frequently are correlated and
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therefore, this would violate the uncorrelated assumption used by the earlier studies’

regression analyses.

The approach used in this thesis, to build a predictive model for 24-hour urinary
creatinine, was a mixed model methodology. This method allowed for the identification
and the specification of a covariance structure that would allow the observations within
one individual to be correlated. The resultant model contained the covariates of height
and body mass index, and the classification variables to indicate if the study participant
had allergies, diabetes, or another medical condition that affected kidney function. It also
included the classification variables that indicated if the participant was taking an anti-
inflammatory prescription medication or was using a creatine dietary supplement. Using
this model, specific subjects’ observations were flagged as ‘suspect’ (i.e., misreported)
urine collections.

Caution should be taken in interpreting this model’s results as ‘causal.” The data
for the NIOSH-CDC “Pesticide Dose Monitoring in Turf Applicators” study were not
collected in a designed experiment fashion. Random assignment of the classification
variables’ levels to the study participants could not occur. The variables of interest were
data collected about the study participants at multiple points in time during their
participation in the study. Hence, this study is a prospective observational study. It cannot
directly demonstrate a cause and effect relationship between the participant’s data and the
participant’s response (the 24-hour total creatinine level); it can only suggest an

association between this response and the participant’s data (Kutner et al. 2005).
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However, it is important to note that the predictive performance of this model, as

evaluated by the MSPR (mean square prediction error) and the correlation coefficient (for
the predicted versus observed creatinine values), for the NIOSH-CDC pesticide data, was
better than the predictive performance of any of the competing models by Turner and
Cohn. (1975), Moriyama et al.(1988), Kawasaki et al. (1991), Harris et al. (2000), Tanaka
et al. (2002), and Penie et al. (2003).

Why the difference in predictive performance of the final model built for this
thesis versus the predictive performance of the other models? Two possible reasons come
to mind. The first reason focuses on the similarity in age and body size (i.e., height and
weight) of the NIOSH-CDC study participants to the older studies’ participants. Kutner et
al. (2005) recommends caution on inferences using the fitted regression function for
values of predictor variables that are far beyond the range of the original predictors used
when the model was built. As noted in the Model Comparisons chapter of this thesis, the
range of ages was comparable for both the NIOSH-CDC study participants and the other
studies’ subjects. The body size characteristics for the NIOSH-CDC participants were
slightly larger than the body size characteristics for the participants in the Moriyama et al.
(1988), Tanaka et al. (2002), and Penie et al. (2003) studies. This may explain some of
the difference in predictive capabilities between these models and the final model built
for this thesis. However, the NIOSH-CDC study participants were more similar in height
and weight to those for the Turner and Cohn (1975) and Harris et al. (2000) studies, so
dissimilarity in body size is not as likely to be the reason for the difference in predictive

capability.
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The second possible reason for the improved predictive capability of the final

model, versus the others, is that all the other models assumed that the measurements
within one individual were uncorrelated. Littell et al. (2006) noted that ignoring
important correlation by using a ‘too simple’ covariance model can risk underestimating
standard errors. The work of Guerin and Stroup (2000), in documenting the effects of
various covariance modeling decisions using the SAS mixed model procedure for
repeated measures data, also showed that “inference is severely compromised by a poor
choice of covariance model.” The improved predictive capability of this thesis’ final
model, over the others, may very well be attributed, at least in part, to its identification
and usage of a covariance structure that allowed the repeated measurements for any one

individual to be correlated.
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Appendix 1

Imputing of 12-hour Creatinine Values for Follow-on Phase Data

Linear regression models (using ordinary least squares) were developed using a
best subsets approach. If three of the four 12-hour creatinine values were available for the
subject, then all three values were initially considered in the subsets approach. Similarly,
if only two of the four 12-hour creatinine values were available for the subject, then these
two values were initially considered in the subsets approach. The resultant model selected
to be used was the model that had all parameter estimates identified as significant (at o =
0.05) and did not violate any of the assumptions associated with the linear regression
model used. Table 9 shows which subjects’ 12-hour creatinine values were imputed and

what equation was used.



Table 9: Imputing Equations

Subjects Day Day Day Day |Impute Equation
3am 3pm 4am 4pm
38, 50, 71, X X X day4_pm = 127.9721 + 4.2051*day3_am
117,122 + 3.7477*day3_pm
83,128 X X X | day3_am = 241.8805 + 4.4221*day4_am
+ 3.2657*day4_pm
41 X X X | day4_am =350.7363 + 5.5381*day3_am
33,44, 69 X X X | day3_pm =327.5140 + 6.2250*day4_pm
35,52, 54 X X day4_pm = 532.8776 + 3.1329*day4_am
day3_pm =510.6217 + 3.3952*day3_am
58, 109 X X | day4_am = 629.8250 + 2.0998*day4_pm
day3_am = 643.1244 + 2.2160*day3_pm
27 X day4_pm = 532.8776 + 3.1329*day4_am

An ‘X’ indicates a 12-hour creatinine value was originally available.
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Appendix 2

Covariance Matrix Structures’ Descriptions

Note: All covariance matrices (X) shown here are symmetric so that only the upper
triangle entries are given.

Independent: Within-subject error correlations are zero (i.e. repeated measures for a
subject are uncorrelated) (Littell et al. 2006).

1 0
1

- O O

- o O O
— O O O O
S O O o O

L

Where X is the covariance matrix for one subject and I is the 6x6 identity matrix.
Unstructured (UN): Each pair of measurements has its own unique correlation (Littell et

al. 2006).

0'12 O Oin Ou 015 O
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Where X is the covariance matrix for one subject

. . .th
o7 is the variance for the i"" measurements

o; is the covariance between the "™ and j‘h measurements (i #j )

Compound Symmetric (CS): Is also known as the intra-class correlation structure
(Khattree and Naik 1999). Compound Symmetric structure has equal variances at all
times and equal covariances between observations on the same subject at all pairs of

times (Cov[Yj, Y] = po?) (Littell et al. 2006).

1 p
1

—~ X D

— N DD
— N v v D
T DV DV T D

I 1]

Where X is the covariance matrix for one subject
o is the error variance

= is the correlation between the i and /™ measurements ( i +7j
p=p, J J

First Order Autoregressive (AR(1)): Is based on the idea that correlation between
observations is a function of their lag in time—adjacent observations are more highly
correlated than observations further apart in time (Littell et al. 2006). In an AR(1)
covariance matrix, the correlation between adjacent measures is the same p regardless if
it is the 1% and 2™, the 3™ and 4", or the 5 and 6™ measures. The correlation between
measures two time units apart is p 2, between three time units apart is p °, etc. (Littell et

al. 2006).



63

[¥}

w

- %
- % ™ D

- D DT/ D
R T T R R

L _J
Where X is the covariance matrix for one subject

o’ is the error variance

P=p,, is the correlation between the first and second measurements

Toeplitz (TOEP): Is similar to First Order Autoregressive in that pairs of within subject
errors separated by a common lag share the same correlation. However, errors d units

apart have correlation py instead of p ¢ (Littell et al. 2006).

1 P P Py Py Ps)
1 P Py Py Py

So g 1 PP P
1 PP

1 p

1

Where X is the covariance matrix for one subject

o is the error variance

p, is the correlation for two measurements that are i time units apart

NOTE: AR(1) and Toeplitz models are generally inappropriate if the observation times

are not equally spaced chronologically (Littell et al. 2006).
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Ante-Dependence (ANTE): Allows for unequal spacing between measurements and

changes in variance over time. The correlation between a pair of observations is the
product of the correlations between adjacent times (between the observations) (Littell et

al. 2006; Wolfinger 1996).

of 010:P, Ci10:P Py C10:PP2P; C105P P2P3Ls G106 P P2P3L4Ps
o 02030, 02040, P; 02:050,P:P, 02062 P3P4Ps
Y — o3 030405 0305P50, 0306 P3P, Ps
o} 01050, C406P4Ps
o3 0506 Ps
L o¢ ]

Where X is the covariance matrix for one subject
o} is the variance for the measurements at time point i
o, 1s the standard deviation for the measurements at time point i
p, is the correlation for two measurements (for one subject) that are i time units
apart.

Spatial: Used for unequally spaced longitudinal measurements (Khattree and Naik 1999).

The covariance between two measurements at times #; and t; is:

CoVly, Y,l= o-ngff (Littell et al. 2006).

Where 4, = [t,- - z_,| is the time elapsed between the i"™ and jIh repeated measure for a
subject (Khattree and Naik 1999)

o’ is the error variance

P, is the correlation between the i and j" measurements

p,; =1 for i =j (Khattree and Naik 1999)
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Appendix 3

SAS Code for Covariance Matrix Structure Tests

titlel 'UNSTRUCTURED...ML RESULTS';
proc mixed data=my.nonrichmondfixed covtest method=ML;
class subjectid timel
n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed;

model creatinine sum = timel n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed
/ ddfm=kr ;

repeated /subject=subjectid type=un

r=2 rcorr=2;

run;

titlel 'COMPOUND SYMMETRIC ML RESULTS';
proc mixed data=my.nonrichmondfixed covtest method=ML;
class subjectid timel
n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed;

model creatinine_sum = timel n_diabetes n_HBP n_kidneystnephr
n_allergies n _drinker n smoker n_ondiet n_onatkinsdiet
n liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed
/ ddfm=kr ;

repeated /subject=subjectid type=cs

Y=2 YCcorr=2; run;
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titlel 'TOEPLITZ ML RESULTS';
proc mixed data=my.nonrichmondfixed covtest method=ML;
class subjectid timel

n_diabetes n_HBP n_kidneystnephr

n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet

n_liftwts n_onpresc n_medcondition n_creatine_supp

n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed

n_antibiotic n_GERDmed

n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed;

model creatinine sum = timel n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed
/ ddfm=kr ;

repeated /subject=subjectid type=toep

r=2 rcorr=2;

run;

titlel AUTO REGRESSIVELl...ML RESULTS';
proc mixed data=my.nonrichmondfixed covtest method=ML;
class subjectid timel
n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed;

model creatinine_sum = timel n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed
/ ddfm=kr ;

repeated /subject=subjectid type=ar (1)

r=2 rcorr=2;

run;

titlel 'ANTE DEPENDENCE...ML RESULTS’;
proc mixed data=my.nonrichmondfixed covtest method=ML;
class subjectid timel
n_diabetes n HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed;

model creatinine sum = timel n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
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n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed
/ ddfm=kr ;
repeated /subject=subjectid type=ANTE (1)
r=2 rcorr=2;
run;

data newdayadd;

set my.nonrichmondfixed;
newday = timel;

run;

titlel 'SPATIAL POWER...ML RESULTS';
proc mixed data=newdayadd covtest method=ML;
class subjectid timel
n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed;

model creatinine_sum = timel n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed
/ ddfm=kr ;

repeated /subject=subjectid type=sp (pow) (newday)

r=2 rcorr=2;

run;



Appendix 4

Covariance Estimates by Type of Covariance Matrix Structure

firsttime

OO OO OO OO A BDEAEDIEDDWOWWWWWWMNRNDNPDNNMNNODND = = 22 aa

secondtime

OO DE WON=-2000bHBOND-=-000ON=2000>:ON-=0000ON-=002,0ON =

lag

O = N WHOAO—=L0O0=-NWAN--LO=-2NWWON-=-O0-=-NH»WON-=-0—=00>b»0N-—=O0

covtype

ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE
ANTE

CovParm

an(1,1)
an(1,2)
an(1,3)
an(1,4)
an(1,5)
an(1,6)
an(2,1)
an(2,2)
an(2,3)
an(2,4)
an(2,5)
an(2,6)
an(3,1)
an(3,2)
an(3,3)
an(3,4)
an(3,5)
an(3,6)
an(4,1)
an(4,2)
an(4,3)
an(4,4)
an(4,5)
an(4,6)
an(5,1)
an(5,2)
an(5,3)
an(5,4)
an(5,5)
an(5,6)
an(6,1)
an(6,2)
an(6,3)
an(6,4)
an(6,5)
an(6,6)

estimate

278502
147088
73212
40814
7175.52
2586.88
147088
220430
109718
61165
10753
3876.77
73212
109718
295498
164734
28962
10441
40814
61165
164734
253009
44481
16036
7175.52
10753
28962
44481
292112
105311
2586.88
3876.77
10441
16036
105311
263034
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secondtime
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covtype
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cS
cs
cs
cs
AR(1)
AR(1)
AR(1)
AR(1
AR(1
AR(1
TOEP
TOEP
TOEP
TOEP
TOEP
TOEP
UN
UN
UN
UN
UN
UN
UN
UN
UN
UN
UN
UN
UN
UN
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UN
UN
UN
UN

— — ~—

CovParm

cs(1,1)

UN(6,6)

estimate

299410
170652
170652
170652
170652
170652
271066
132583
64848
31718
15514
7588.07
303324
168253
182338
175259
169608
205953
300157
164735
236397
177383
135932
329659
176321
156387
188623
272166
119125
145037
187253
100790
332034
206765
178500
172166
168709
145104
324452
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Appendix 5

Output from Covariance Analysis

Data Set

Dependent Vari
Covariance Str
Subject Effect
Estimation Met

Residual Variance Method

Fixed Effects

Degrees of Freedom Method

Class
SubjectID

time1

n_diabetes
n_HBP
n_kidneystnephr
n_allergies
n_drinker
n_smoker
n_ondiet
n_onatkinsdiet
n_liftwts
n_onpresc

UNSTRUCTURED

able
ucture

hod

SE Method

Class Level Information
Values

Levels
110

18

WWwWwwowowowmnp

..ML RESULTS...
The Mixed Procedure
Model Information
MY . NONRICHMONDFIXED
creatinine_sum
Unstructured

SubjectID

M

None

L

Prasad-Rao-Jeske-
Kackar-Harville
Kenward-Roger

27
38
48
58
68
78
88
98
108
115
122
129
151
12
162
212

©

O OO0 OO0 OO = = =
O (o I ¢

28
39
49
59
69
79
89
99

29
40
50
60
70
80
90

100 101 102

109
116
123
130
1562
50 51 57 58
163 176 177

© O ©O© ©O O © O

30
41
51
61
71
81
91

110
117
124
131
163

31
42
52
62
72
82
92

111
118
125
132
154

32 33 34 35 37
43 44 45 46 47
53 54 55 56 57
63 64 65 66 67
73 74 75 76 77
83 84 85 86 87
93 94 95 96 97
104 105 107
112 113 114
119 120 121
126 127 128
133 134 150

78 79 141 142
197 198 211
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/*** By using the R and RCORR options in the REPEATED statement of PROC MIXED, the user
can get the Estimated Covariance Matrix (R Matrix) and the Correlation Matrix displayed

n_medcondition 3 019
n_creatine_supp 3 019
n_antidepress 2 19
n_analgesia 2 19
n_allergymed 2 19
n_bloodmed 2 19
n_kidneymed 2 19
n_antibiotic 2 19
n_GERDmed 2 19
n_asthmamed 2 19
n_diabetesmed 2 19
n_antiinflam 2 19
n_thyroidmed 2 19
n_unknownmed 2 19
Dimensions
Covariance Parameters 21
Columns in X 76
Columns in Z 0
Subjects 110
Max Obs Per Subject 6
Number of Observations
Number of Observations Read 660
Number of Observations Used 474
Number of Observations Not Used 186
Iteration History
Iteration Evaluations -2 Log Like Criterion
0 1 7254.42743229
1 3 7110.96711465 0.00456758
2 2 7103.37735332 0.00068123
3 1 7100.97261193 0.00004547
4 1 7100.82273177 0.00000043
5 1 7100.82138246 0.00000000

Convergence criteria met.

71

for the person specified in these options. In the SAS code used for this case, the R and
RCORR options were set = 2 which corresponded to Subject ID 28. This was done solely for
example purposes. ***/

Row

OO A WN =

Row

Estimated R Matrix for SubjectID 28

Colt Col2
300157 164735
164735 236397
177383 135932
176321 156387
119125 145037
206765 178500

Col3
177383
135932
329659
188623
187253
172166

Col4 Colb
176321 119125
156387 145037
188623 187253
272166 100790
100790 332034
168709 145104

Estimated R Correlation Matrix for SubjectID 28

Colt

Col2

1.0000 0.6184

Col3
0.5639

Col4 Col5
0.6169 0.3773

Colé
206765
178500
172166
168709
145104
324452

Colé
0.6626
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0.6184 1.0000 0.4869 0.6165 0.5177
0.5639 0.4869 1.0000 0.6297 0.5660
0.6169 0.6165 0.6297 1.0000 0.3353
0.3773 0.5177 0.5660 0.3353 1.0000
0.6626 0.6445 0.5264 0.5677 0.4421
Covariance Parameter Estimates
Standard z
Cov Parm Subject Estimate Error Value
UN(1,1) SubjectID 300157 47882 6.27
UN(2,1) SubjectID 164735 35210 4,68
UN(2,2) SubjectID 236397 38194 6.19
UN(3,1) SubjectID 177383 43196 4.1
UN(3,2) SubjectID 135932 37206 3.65
UN(3,3) SubjectID 329659 52941 6.23
UN(4,1) SubjectID 176321 38654 4.56
UN(4,2) SubjectID 156387 33794 4.63
UN(4,3) SubjectID 188623 40518 4,66
UN(4,4) SubjectID 272166 45115 6.03
UN(5,1) SubjectID 119125 53763 2.22
UN(5,2) SubjectID 145037 48712 2.98
UN(5,3) SubjectID 187253 51827 3.61
UN(5,4) SubjectID 100790 47603 2.12
UN(5,5) SubjectID 332034 65337 5.08
UN(6,1) SubjectID 206765 53310 3.88
UN(6,2) SubjectID 178500 45370 3.93
UN(6,3) SubjectID 172166 51880 3.32
UN(6,4) SubjectID 168709 49877 3.38
UN(6,5) SubjectID 145104 52657 2.76
UN(6,6) SubjectID 324452 69713 4.65
Fit Statistics
-2 Log Likelihood 7100.8
AIC (smaller is better) 7244.8
AICC (smaller is better) 7271.0
BIC (smaller is better) 7439.3
Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
20 153.61 <.0001
COMPOUND SYMMETRIC...ML RESULTS
Model Information
Data Set MY . NONRICHMONDF IXED

Dependent Variable

Covariance Structure
Subject Effect
Estimation Method
Residual Variance Method
Fixed Effects SE Method

Degrees of Freedom Method

Dimensi

creatinine_sum
Compound Symmetry
SubjectID

ML

Profile
Prasad-Rao-Jeske-
Kackar-Harville
Kenward-Roger

ons

AOOOANANOAOOOOAAANAANANOANANNANNA

0.6445
0.5264
0.5677
0.4421
1.0000

Pr Z

.0001
.0001
.0001
.0001
.0003
.0001
.0001
.0001
.0001
.0001
.0267
.0029
.0003
.0342
.0001
.0001
.0001
.0009
.0007
.0059
.0001
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/*** By using the R and RCORR options in the REPEATED statement of PROC MIXED, the user
can get the Estimated Covariance Matrix (R Matrix) and the Correlation Matrix displayed

Covariance Parameters 2
Columns in X 76
Columns in Z 0
Subjects 110
Max Obs Per Subject 6

Number of Observations

Number of Observations Read 660
Number of Observations Used 474
Number of Observations Not Used 186
Iteration History

Iteration Evaluations -2 Log Like Criterion
0 1 7254.42743229
1 2 7130.08285559 0.00118217
2 1 7125.61078450 0.00020714
3 1 7124.88660474 0.00000883
4 1 7124.85815422 0.00000002
5 1 7124.85809410 0.00000000

Convergence criteria met.
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for the person specified in these options. In the SAS code used for this case, the R and
RCORR options were set = 2 which corresponded to Subject ID 28. This was done solely for

example purp

Row

o J4, B - /S I S IR

Row

o Oh wWwNN =

oses. ***/

Estimated R Matrix for SubjectID 28

Col1 Col2 Col3 Col4
299410 170652 170652 170652 17
170652 299410 170652 170652 17
170652 170652 299410 170652 17
170652 170652 170652 299410 17
170652 170652 170652 170652 29
170652 170652 170652 170652 17
Estimated R Correlation Matrix for SubjectID
Colt Col2 Col3 Col4
1.0000 0.5700 0.5700 0.5700 0
0.5700 1.0000 0.5700 0.5700 0
0.5700 0.5700 1.0000 0.5700 0
0.5700 0.5700 0.5700 1.0000 0
0.5700 0.5700 0.5700 0.5700 1
0.5700 0.5700 0.5700 0.5700 0
Covariance Parameter Estimates
Standard Z
Cov Parm Subject Estimate Error Value
cs SubjectID 170652 30543 5.59
Residual 128758 9807.14 13.13
Fit Statistics
-2 Log Likelihood 7124.9
AIC (smaller is better) 7230.9
AICC (smaller is better) 7244.5
BIC (smaller is better) 7374.0

Col5s
0652
0652
0652
0652
9410
0652

28
Col5

.5700
.5700
.5700
.5700
.0000
.5700

Colé
170652
170652
170652
170652
170652
299410

Col6
.5700
.5700
.5700
.5700
.5700
.0000

- O OO O0oOOo

Pr Z
<,0001
<,0001



/*** By using the R and RCORR options in the REPEATED statement of PROC MIXED, the user
can get the Estimated Covariance Matrix (R Matrix) and the Correlation Matrix displayed

Null Model Likelihood Ratio Test
DF Chi-Square

1

129.57

Pr > ChiSgq
<.0001

TOEPLITZ...ML RESULTS...
Model Information

Data Set

Dependent Variable
Covariance Structure
Subject Effect
Estimation Method

Residual Variance Method

Fixed Effects SE Method

Degrees of Freedom Method

MY . NONRICHMONDFIXED
creatinine_sum
Toeplitz

SubjectID

ML

Profile
Prasad-Rao-Jeske-
Kackar-Harville
Kenward-Roger

Convergence criteria met.

Dimensions

Covariance Parameters 6

Columns in X 76

Columns in Z 0

Subjects 110

Max Obs Per Subject 6

Number of Observations
Number of Observations Read 660
Number of Observations Used 474
Number of Observations Not Used 186
Iteration History
Iteration Evaluations -2 Log Like Criterion

0 1 7254.42743229
1 2 7126.74574240 0.00196163
2 1 7122.23335054 0.00021267
3 1 7121.51065052 0.00000604
4 1 7121.49134690 0.00000001
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for the person specified in these options. In the SAS code used for this case, the R and
RCORR options were set = 2 which corresponded to Subject ID 28. This was done solely for
example purposes. ***/

Row

[o) 4 N - /L I b I

Row

Estimated R Matrix for SubjectID 28

Col1 Col2
303324 168253
168253 303324
182338 168253
175259 182338
169608 175259
205953 169608

Estimated R Correlation Matrix

Col2
0.5547

Col1
1.0000

Col3 Col4
182338 175259
168253 182338
303324 168253
168253 303324
182338 168253
175259 182338

Col4
0.5778

Col3
0.6011

Col5
169608
175259
182338
168253
303324
168253

for SubjectID 28

Col5
0.5592

Col6
205953
169608
175259
182338
168253
303324

Colé
0.6790



O s WN

0.5547 1.0000 0.5547 0.6011 0.5778
0.6011 0.5547 1.0000 0.5547 0.6011
0.5778 0.6011 0.5547 1.0000 0.5547
0.5592 0.5778 0.6011 0.5547 1.0000
0.6790 0.5592 0.5778 0.6011 0.5547
Covariance Parameter Estimates
Standard z
Cov Parm Subject Estimate Error Value
TOEP(2) SubjectID 168253 31348 5.37 <
TOEP(3) SubjectID 182338 32135 5.67 <
TOEP(4) SubjectID 175259 32974 5.32 <
TOEP(5) SubjectID 169608 36656 4.63 <
TOEP(6) SubjectID 205953 39195 5.25 <
Residual 303324 31212 9.72 <
Fit Statistics
-2 Log Likelihood 7121.5
AIC (smaller is better) 7235.5
AICC (smaller is better) 7251.4
BIC (smaller is better) 7389.4
Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
5 132.94 <. 0001
AUTO REGRESSIVE1 ..ML RESULTS...
Model Information
Data Set MY . NONRICHMONDF IXED
Dependent Variable creatinine_sum
Covariance Structure Autoregressive
Subject Effect SubjectID
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Prasad-Rao-Jeske-
Kackar-Harville
Degrees of Freedom Method Kenward-Roger
Dimensions
Covariance Parameters 2
Columns in X 76
Columns in Z 0
Subjects 110
Max Obs Per Subject 6
Number of Observations
Number of Observations Read 660
Number of Observations Used 474
Number of Observations Not Used 186
Iteration History
Iteration Evaluations -2 Log Like Criterion
0 1 7254.42743229

0.5592
0.5778
0.6011
0.5547
1.0000

Pr Z

.0001
.0001
.0001
.0001
.0001
.0001
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/*** By using the R and RCORR options in the REPEATED statement of PROC MIXED, the user
can get the Estimated Covariance Matrix (R Matrix) and the Correlation Matrix displayed

1 2 7177 .33796707 0.00000614

Convergence criteria met.

2 1 7177.31852443 0.00000000

76

for the person specified in these options. In the SAS code used for this case, the R and
RCORR options were set = 2 which corresponded to Subject ID 28. This was done solely for

example purp

Row

OO h WN =

Row

OO A WN =

oses, ***/
Estimated R Matrix for SubjectID 28
Colt Col2 Col3 Col4 Col5
271066 132583 64848 31718 15514
132583 271066 132583 64848 31718
64848 132583 271066 132583 64848
31718 64848 132583 271066 132583
15514 31718 64848 132583 271066
7588.07 15514 31718 64848 132583
Estimated R Correlation Matrix for SubjectID 28
Col1 Col2 Col3 Col4 Col5
1.0000 0.4891 0.2392 0.1170 0.05723
0.4891 1.0000 0.4891 0.2392 0.1170
0.2392 0.4891 1.0000 0.4891 0.2392
0.1170 0.2392 0.4891 1.0000 0.4891
0.05723 0.1170 0.2392 0.4891 1.0000
0.02799 0.057283 0.1170 0.2392 0.4891
Covariance Parameter Estimates
Standard z
Cov Parm Subject Estimate Error Value
AR(1) SubjectID 0.4891 0.04949 9.88
Residual 271066 21906 12.37
Fit Statistics
-2 Log Likelihood 7177.3
AIC (smaller is better) 7283.3
AICC (smaller is better) 7296.9
BIC (smaller is better) 7426.4
Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
1 77 .11 <,0001
ANTE DEPENDENCE...ML RESULTS...
Model Information
Data Set MY . NONRICHMONDFIXED
Dependent Variable creatinine_sum
Covariance Structure Ante-dependence
Subject Effect SubjectID
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville

Col6
7588.07
15514
31718
64848
132583
271066

Col6
0.02799
0.05723

0.1170
0.2392
0.4891
1.0000

Pr Z
<.,0001
<.0001



/*** By using the R and RCORR options in the REPEATED statement of PROC MIXED, the user
can get the Estimated Covariance Matrix (R Matrix) and the Correlation Matrix displayed

Degrees of Freedom Method

Iteration

0

1
2
3

Dimensions

Covariance Parameters
Columns in X
Columns in Z

Subjects

Max Obs Per Subject

Number of Observations
Number of Observations Read
Number of Observations Used
Number of Observations Not Used

Iteration History

Evaluations -2 Log Like
1 7254.42743229
2 7161.83884820
1 7161.27658827
1 7161.25889241

Convergence criteria met.

Kenward-Roger

11

76

110

660
474
186

Criterion

0.00016244

0.00000548
0.00000001
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for the person specified in these options. In the SAS code used for this case, the R and
RCORR options were set = 2 which corresponded to Subject ID 28. This was done solely for
example purposes. ***/

Row

DO A WN =

Row

OO h WM =

Col1
278502
147088

73212
40814
7175.52
2586.88

Estimated R Correlation Matrix

Colt
1.0000
0.5936
0.2552
0.1538

0.02516
0.009558

Cov
Parm
var(1)
Var(2)
Var(3)
var(4)
Var(5)
var(6)
Rho(1)
Rho(2)
Rho(3)

Estimated R Matrix for SubjectID 28

Col2
147088
220430
109718

61165
10753
3876.77

Col2
0.5936
1.0000
0.4299
0.2590

0.04238
0.01610

Covariance Parameter Estimates

Subject

SubjectID
SubjectID
SubjectID
SubjectID
SubjectID
SubjectID
SubjectID
SubjectID
SubjectID

Col3 Col4
73212 40814
109718 61165
295498 164734
164734 253009
28962 44481
10441 16036

Col3 Col4
0.2552 0.1538
0.4299 0.2590
1.0000 0.6025
0.6025 1.0000

0.09858 0.1636
0.03745 0.06216

Standard

Estimate Error
278502 44863
220430 36149
295498 49059
253009 44179
292112 57821
263034 53379
0.5936 0.07106
0.4299 0.1189
0.6025 0.07348

for SubjectID 28

Col5s Col6
7175.52 2586.88
10753 3876.77
28962 10441
44481 16036
292112 105311
105311 263034
Cols Colé
0.02516 0.009558
0.04238 0.01610
0.09858 0.03745
0.1636 0.06216
1.0000 0.3799
0.3799 1.0000
Z
Value Pr Z
6.21 <.0001
6.10 <,0001
6.02 <.0001
5.73 <.0001
5.05 <.0001
4,93 <.0001
8.35 <,0001
3.62 0.0003
8.20 <.0001



/*** By using the R and RCORR options in the REPEATED statement of PROC MIXED, the user
can get the Estimated Covariance Matrix (R Matrix) and the Correlation Matrix displayed

Rho(4)
Rho(5)

Data

Depen
Covar
Subje
Estim
Resid
Fixed

Degre

Iterati

SubjectID 0.1636 0.1832 0.89 0.3719
SubjectID 0.3799 0.1190 3.19 0.0014
Fit Statistics
-2 Log Likelihood 7161.3
AIC (smaller is better) 7285.3
AICC (smaller is better) 7304.3
BIC (smaller is better) 7452.7

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
10 93.17 <.0001

SPATIAL POWER...ML RESULTS..
Model Information

Set WORK . NEWDAYADD
dent Variable creatinine_sum
iance Structure Spatial Power
ct Effect SubjectID
ation Method ML
ual Variance Method Profile
Effects SE Method Prasad-Rao-Jeske-
Kackar-Harville
es of Freedom Method Kenward-Roger
Dimensions
Covariance Parameters 2
Columns in X 76
Columns in Z 0
Subjects 110
Max Obs Per Subject 6

Number of Observations

Number of Observations Read 660
Number of Observations Used 474
Number of Observations Not Used 186

Iteration History

on Evaluations -2 Log Like Criterion
0 1 7254.42743229
1 2 7178.72862657 0.00000000

Convergence criteria met.
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for the person specified in these options. In the SAS code used for this case, the R and
RCORR options were set = 2 which corresponded to Subject ID 28. This was done solely for
example purposes. ***/

Row

W N =

Coli
259035
136161

Estimated R Matrix for SubjectID 28
Col2 Col3 Col4 Col5
136161
259035
259035 136161

Colé



4 136161 259035
5 259035
6 136161

Estimated R Correlation Matrix for SubjectID 28

Row Col1 Col2 Col3 Col4 Col5
1 1.0000 0.5256
2 0.5256 1.0000
3 1.0000 0.5256
4 0.5256 1.0000
5 1.0000
6 0.5256

Covariance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value
SP (POW) SubjectID 0.5256 0.04716 11.15
Residual 259035 18920 13.69

Fit Statistics

-2 Log Likelihood 7178.7
AIC (smaller is better) 7284.7
AICC (smaller is better) 7298.4
BIC (smaller is better) 7427.9

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
1 75.70 <.0001

136161
259035

Colé

0.5256
1.0000

Pr Z
<.0001
<.0001

79
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Appendix 6

AIC, AICC, BIC Calculations

For the mixed model, Var(Y) = 0ZGZ'+R]. Let V =ZGZ ' +R. Using the maximum
likelihood methodology in the SAS mixed model procedure (PROC MIXED), the
information criteria (Gurka 2006) are calculated as:

AIC=-21,, +2(q+k)

2P,
AICC=-2l,, +2(q+k) ! :

n

((;p,-)—(q+k)—1)

BIC =-2l,, +(q+k )(logn)

where the log-likelihood (Iy.) is
Ly = —%ln|V| —%(Y -XB)V(Y -XpB )—g—ln( 2z ) (Littell et al. 2006)

and: ¢ = number of fixed effects (in the § vector)
k = number of covariance parameters being estimated for both
the G and R covariance matrices.
i = 1,2,3,...,n
n = number of subjects

pi = number of measurements for the i™ subject
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Appendix 7

Estimation of Fixed and Random Effects in the Mixed Model when using REML

As noted earlier, for the mixed model, E(Y) = Xf and Var(Y) = 0'7'[ZGZ' + R].
The Estimated Best Linear Unbiased Estimator (EBLUE) of the fixed effects (,B ) and the
Estimated Best Linear Unbiased Predictor (EBLUP) of the random effects (D) can be
obtained by letting V = ZGZ’ + R, ‘plugging in’ the REML estimates of the G and R

covariance matrices (é and R respectively) into V to get V =ZGZ’+R, and then
solving this system of mixed model equations (Henderson 1984; Littell et al. 2006)

shown here:

XR'X XR'z |B|_|xRY
ZR'X ZR'Z+G'|d| |ZR'Y

The solutions (Khattree and Naik 1999) are:

B _ (XV'X)'XxV'y _ (XVIX ) 'xvy
D| |GZV (Y -X(XV'X)'XVY) GZV(Y-XB)
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Appendix 8

Profile Plots, Box Plots and Multiple Comparisons by Location

24—hr Creatinine versus Day of Collection

By Locati on
Locat i on=1

N

e
X

e

>

24-howr creatini ne

Doy

Figure 5: Plot of Creatinine versus Day of Collection for Location 1



24—hr Creatinine versus Day of Collection

By Locati on
Locati on=2

24-howr creatini ne

Figure 6: Plot of Creatinine versus Day of Collection for Location 2

24—hr Creatinine versus Day of Collection

By Locati on
Locati on=3

24-hour creatin

8

30007

Figure 7: Plot of Creatinine versus Day of Collection for Location 3
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24—hr Creatinine versus Day of Collection

B/ Locati on
Locat i orn=a

24-hour creatin ne

Figure 8: Plot of Creatinine versus Day of Collection for Location 4

24—hr Creatinine versus Day of Collection
By Locati con

24-hour creatini ne
40007]

Figure 9: Plot of Creatinine versus Day of Collection for Location 5
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24—hr Creatinine Box Plots

By Locati on

24-hour creatini ne

* %

15007

Location

Figure 10: Box Plot of Creatinine by Location

24-hr Creatinine By Location

Tukey-Kramer Comparison with All
Root MSE sqrt(2)gq*

DF = 469 = 591.74 = 3.8727
Level Compared Mean Diff Lower Limit Upper Limit
1 2 164.3471 -61.8222 390.5164
1 3 44,2620 -181.9072 270.4313
1 4 41.5799 -171.4604 254.6202
1 5 200.1677 -38.3196 438.6550
2 1 -164.3471 -390.5164 61.8222
2 3 -120.0851 -370.1246 129.9545
2 4 -122.7672 -360.9969 115.4625
2 5 35.8206 -225.4138 297.0550
3 1 -44,2620 -270.4313 181.9072
3 2 120.0851 -129.9545 370.1246
3 4 -2.6822 -240.9119 235.5475
3 5 155.9057 -105.3287 417.1401
4 1 -41.5799 -254.6202 171.4604
4 2 122.7672 -115.4625 360.9969
4 3 2.6822 -235.5475 240.9119
4 5 158.5879 -91.3662 408.5419
5 1 -200.1677 -438.6550 38.3196
5 2 -35.8206 -297.0550 225.4138
5 3 -1565.9057 -417.1401 105.3287
5 4 -158.5879 -408.5419 91.3662

OO0 000 - 000 - 000000 O0OO0O0OO0O

Value
.2725
.9836
.9837
.1472
.2725
.6819
.6207
.9958
.9836
.6819
.0000
.4762
.9837
.6207
.0000
.4120
1472
.9958
.4762
.4120
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Data Set

Appendix 9

Initial Model Output

The Mixed Procedure
Model Information

Dependent Variable
Covariance Structure

Subject Effect

Estimation Method

Residual Variance Method

Fixed Effects SE Method

Degrees of Freedom Method

Class
SubjectID

time1

n_diabetes
n_HBP
n_kidneystnephr
n_allergies
n_drinker
n_smoker
n_ondiet
n_onatkinsdiet
n_liftwts
n_onpresc
n_medcondition

MY . NONRICHMONDFIXED
creatinine_sum
Compound Symmetry
SubjectID

REML

Profile
Prasad-Rao-Jeske-
Kackar-Harville
Kenward-Roger

Class Level Information

Levels
106

18

WWWwWWwwmPlwMNdNoN

Va
27
38
49
59
69
79
90
10
11
11
12
13
15
1

16
21

O OO0 00000 = —= =

lues
28 29 30 31 32 33
39 40 41 43 44 45
50 51 52 53 54 55
60 61 62 63 64 65
70 71 72 73 74 75
80 81 83 84 85 86
91 92 93 94 95 96
0 101 102 104 107 1
0 111 112 113 114 1
7 118 119 120 121 1
4 125 126 127 128 1
1 132 133 134 150 1
3

34
46
56
66
76
87
97
08
15
22
29
51

35
47
57
67
77
88
98
109
116
123
130
152

37
48
58
68
78
89
99

2 50 51 57 58 78 79 141 142
2 163 176 177 197 198 211

2

[{e]

- - d A a o aa

[{e I (e (o I (o I (e I (e}
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/*** By using the R and RCORR options in the REPEATED statement of PROC MIXED, the user
can get the Estimated Covariance Matrix (R Matrix) and the Correlation Matrix displayed

n_creatine_supp
n_antidepress
n_analgesia
n_allergymed
n_bloodmed
n_kidneymed
n_antibiotic
n_GERDmed
n_asthmamed
n_diabetesmed
n_antiinflam
n_thyroidmed
n_unknownmed

3 019
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
Dimensions

Covariance Parameters
Columns in X

Columns in Z

Subjects

Max Obs Per Subject

Number of Observations
Number of Observations Read
Number of Observations Used
Number of Observations Not Used

Iteration History

Iteration Evaluations -2 Res
0 1 6400
1 2 6309
2 1 6308
3 1 6308
4 1 6308

Log Like
.61362658
.91829239
.61870799
.52646824
.52580027

Convergence criteria met.

80

106

660
453
207

Criterion

0.00040637
0.00003151
0.00000024
0.00000000

87

for the person specified in these options. In the SAS code used for this case, the R and
RCORR options were set = 48 which corresponded to Subject ID 76. This was done solely for
example purposes. ***/

Row

OO A WN =

Estimated R Matrix for SubjectID 76

Colt Col2 Col3
308194 161271 161271
161271 308194 161271
161271 161271 308194
161271 161271 161271
161271 161271 161271
161271 161271 161271

Col4
161271
161271
161271
308194
161271
161271

Col5
161271
161271
161271
161271
308194
161271

Col6
161271
161271
161271
161271
161271
308194



Row

Cov Parm

CS
Residual

O A wWwN =

Estimated R Correlation Matrix for SubjectID 76

Col1 Col2 Col3 Col4
1.0000 0.5233 0.5233 0.5233
0.5233 1.0000 0.5233 0.5233
0.5233 0.5233 1.0000 0.5233
0.5233 0.5233 0.5233 1.0000
0.5233 0.5233 0.5233 0.5233
0.5233 0.5233 0.5233 0.5233

Covariance Parameter Estimates

Standard z
Subject Estimate Error  Value Prz A
SubjectID 161271 32726 4.93 <.0001
146923 11733 12.52 <.0001
Fit Statistics

-2 Res Log Likelihood 6308.5
AIC (smaller is better) 6312.5
AICC (smaller is better) 6312.6
BIC (smaller is better) 6317.9

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq

1 92.09 <.0001
Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value
Intercept 1 117 0.69
age_at_collect 1 89.6 1.09
calc_bmi 1 123 0.50
calc_cm_ht 1 116 0.74
calc_kg_wt 1 122 0.11
n_diabetes 1 171 0.74
n_HBP 1 171 0.24
n_kidneystnephr 1 140 0.00
n_allergies 2 337 15.32
n_drinker 1 323 0.40
n_smoker 2 190 0.01
n_ondiet 2 402 0.73
n_onatkinsdiet 2 302 0.30
n_liftwts 2 401 1.09
n_onpresc 2 398 1.51
n_medcondition 2 244 10.50
n_creatine_supp 2 397 8.63
n_antidepress 1 409 3.14
n_analgesia 1 147 0.02
n_allergymed 1 411 0.06
n_bloodmed 1 305 0.96
n_kidneymed 1 160 0.33
n_antibiotic 1 201 0.70
n_GERDmed 1 257 0.14
n_asthmamed 1 116 0.21

Col5
.5233
.5233
.5233
.5233
.0000
.5233

o - O O OO
- OO O OO

1pha Lower

0.05 97129
0.05 126389

Pr > F
.4062
.2998
.4824
.3899
.7400
.3911
.6282
.9923
.0001
.5293
.9888
.4848
.7395
.3381
.2211
.0001
.0002
L0771
.8815
.8015
.3282
.5670
.4022
.7066
.6456

OO0 0000000 ANOO0ODO0ODO0ODO0OOANODOODOOOOO

88

Colé

.5233
.5233
.5233
.5233
.5233
.0000

Upper

225413
172931



n_diabetesmed
n_antiinflam
n_thyroidmed
n_uriknownmed
n_ondiet*n_onatkinsd
n_diabete*n_diabetes
n_HBP*n_bloodmed
n_kidneys*n_kidneyme

90.8
187
92.3
274
294
339
346
155

ot - O WO WOo

.08
.69
.00
.09
.59
.12
.90
.06

O 00O OO0 00

.7845
.0563
.9733
.0800
.5524
.2913
.0156
.8026

89



Data Set

Appendix 10

Final Model Output

The Mixed Procedure
Model Information

Dependent Variable
Covariance Structure

Subject Effect

Estimation Method

Residual Variance Method

Fixed Effects SE Method

Degrees of Freedom Method

Class
SubjectID

time1

n_diabetes
n_HBP
n_kidneystnephr
n_allergies
n_drinker
n_smoker
n_ondiet
n_onatkinsdiet
n_liftwts
n_onpresc
n_medcondition

MY .NONRICHMONDFIXED
creatinine_sum
Compound Symmetry
SubjectID

REML

Profile
Prasad-Rao-Jeske-
Kackar-Harville
Kenward-Roger

Class Level Information

Levels
107

18

WWWwwwMPnwNdNOND

Va
27
38
49
59
69
79
89
99
11
11
12
13
15
1

16
21

O OO0 0000 O = = =

lues

28 29 30 31 32 33
39 40 41 43 44 45
50 51 52 53 54 55
60 61 62 63 64 65
70 71 72 73 74 75
80 81 82 83 84 85
90 91 92 93 94 95

34
46
56
66
76
86
96

35
47
57
67
77
87
97

100 101 102 104 107 108

0 111 112 113 114 115 116
7 118 119 120 121 122 123
4 125 126 127 128 129 130
1 132 133 134 150 151 152

3

37
48
58
68
78
88
98
109

2 50 51 57 58 78 79 141 142

2 163 176 177 197 198 211

2

©

G g (o B *)

© © © © © ©
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n_creatine_supp
n_antidepress
n_analgesia
n_allergymed
n_bloodmed
n_kidneymed
n_antibiotic
n_GERDmed
n_asthmamed
n_diabetesmed
n_antiinflam
n_thyroidmed
n_unknownmed

3 019
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
2 19
Dimensions

Covariance Parameters
Columns in X
Columns in Z
Subjects

Max Obs Per Subject

Number of Observations
Number of Observations Read
Number of Observations Used
Number of Observations Not Used

Iteration History

Iteration Evaluations
0 1
1 2
2 1
3 1

-2 Res Log Like
6891.89017725
6777.60640768
6777.28526039
6777.27865416

Convergence criteria met.

16

107

660
457
203

Criterion

0.00009905

0.00000218
0.00000000
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/*** By using the R and RCORR options in the REPEATED statement of PROC MIXED, the user
can get the Estimated Covariance Matrix (R Matrix) and the Correlation Matrix displayed
for the person specified in these options. In the SAS code used for this case, the R and
RCORR options were set = 48 which corresponded to Subject ID 76. This was done solely for
example purposes. ***/

Row

OO H WN =

Row

A WOWN =

Estimated R Matrix for SubjectID 76

Colt Col2
294714 148567
148567 294714
148567 148567
148567 148567
148567 148567
148567 148567

Estimated R Correlation Matrix

Col1 Col2
1.0000 0.5041
0.5041 1.0000
0.5041 0.5041
0.5041 0.5041

Col3 Col4
148567 148567
148567 148567
294714 148567
148567 294714
148567 148567
148567 148567

Col3 Col4
0.5041 0.5041
0.5041 0.5041
1.0000 0.5041
0.5041 1.0000

Col5
148567
148567
148567
148567
294714
148567

for SubjectID 76

Col5
.5041
.5041
.5041
.5041

O O O o

Colé
148567
148567
148567
148567
148567
294714

Col6
0.5041
0.5041
0.5041
0.5041



92
5 0.5041 0.5041 0.5041 0.5041 1.0000 0.5041
6 0.5041 0.5041 0.5041 0.5041 0.5041 1.0000

Covariance Parameter Estimates

Standard z
Cov Parm  Subject Estimate Error  Value Pr Z  Alpha Lower Upper
cS SubjectID 148567 27924 5.32 <.0001 0.05 93836 203298
Residual 146147 11283 12.95 <.0001 0.05 126329 171051
Fit Statistics

-2 Res Log Likelihood 6777.3

AIC (smaller is better) 6781.3

AICC (smaller is better) 6781.3

BIC (smaller is better) 6786.6

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
1 114.61 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F value Pr > F
Intercept 1 127 6.27 0.0135
calc_bmi 1 122 27.20 <.0001
calc_cm_ht 1 129 4.80 0.0303
n_diabetes 1 374 6.78 0.0096
n_allergies 2 368 13.04 <.0001
n_medcondition 2 428 9.04 0.0001
n_creatine_supp 2 434 10.14 <.0001
n_antiinflam 1 206 6.63 0.0107
Fixed Effect Estimates:
Qo
c o
(o] 3
-~ n =3
(%23 + | [\]
[72] Q -~ Q —
] Kl k=] c N
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Appendix 11

SAS Code for Final Model

/* to get residual plots and create an output file with the predicted
values */

ods output SolutionF;

ods html;
ods graphics on;

proc mixed data=my.nonrichmondfixed cl covtest method=REML;

class subjectid timel
n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_ supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed _unknownmed;

model creatinine sum = calc_bmi calc_cm_ht
n_diabetes
n_allergies
n_medcondition n_creatine_ supp
n_antiinflam
/ddfm=kr s intercept cl htype=3 residual outp=predictedvalues;

repeated /subject=subjectid type=cs r=48 rcorr=48;
run;

ods html close;
ods graphics off;

/* to get influence diagnostics */
ods output SolutionF influence;

titlel 'REML; ITER Influence diagnostics; used default ddfm not KR';
proc mixed data=my.nonrichmondfixed cl covtest method=REML;
class subjectid timel
n_diabetes n_ HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n_onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
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n_antidepress n_analgesia n_allergymed n bloodmed n_kidneymed
n_antibiotic n_GERDmed

n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed;

model creatinine_sum = calc bmi calc _cm_ht
n_diabetes
n_allergies
n medcondition n_creatine_supp
n_antiinflam

/ s intercept htype=3

/* For single observation case deletion use: */

influence (iter=5);

/* iter forces refit of model & covariance parameters; however must use
default degrees of freedom; cannot use dfddfm=kr when running influence
diagnostics*/

/* For all of one subject’s observations to be deleted, use:*/

influence (effect=subjectid iter=5);

repeated /subject=subjectid type=cs;
run;



Appendix 12

Residual Plots for Final Model
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Figure 11: Residual Plots for Final Model
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High Leverage Observations (leverage > 0.1):
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Appendix 14

Influence Diagnostics by Observation

Influential Observations based on Restricted Likelihood Distance (RLD) >0.3:
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Figure 12: Plot of Overall Influence by Subject and Day of Collection
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Cook’s Distance (>0.04)
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102

COVRATIO
Sub Day CovRatio
45 3 1.698945
45 4 1.698945
63 3 1.443698
63 4 1.432325
Influence on Fixed Effects Using COVRATIO
by Subject ID& Day of Collection
O dayl = day2 A day3 Dday4 X day5 O day6
1.8 4
S45 B
1.6 1
1.4
1.2 4
o
E 11 a8
<
i
>
O 0.8 -
o
0.6 -
04
0.2 4
0 - T T T T T T T

25 35 45 55 65 75 85 95 105 115 125 135 145 155
Subject ID

Figure 15: Plot of COVRATIO by Subject and Day of Collection
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Appendix 15

SAS Code for Calculating Other Models’ Predicted Values

libname my "C:\Documents and Settings\Owner\Desktop\thesis\";
run;

data my.othermodels;
set my.nonrichmondfixed;

peniepredict = -1791.05 + 17.69 * calc_cm ht;
penieresid = creatinine_sum - peniepredict;
penieresidsg=penieresid**2;

turnerpredict = (0.0143*calc_cm_ht + 0.00975*calc_kg _wt -

0.00734* (age_at_collect - 20.0) - 1.391) *1000.0;
turnerresid = creatinine_sum - turnerpredict;
turnerresidsg = turnerresid**2;

kawasakipredict = (-12.63)*age_at_collect + 15.12*calc_kg wt +
7.39*calc_cm _ht -79.9;

kawasakiresid = creatinine_sum - kawasakipredict;
kawasakiresidsg = kawasakiresid**2;

bodysurface= 0.02350 * (calc_cm_ht**0.42246)* (calc_kg wt**0.51456) ;
dodgepredict= (0.1457*bodysurface + 0.2888*bodysurface*bodysurface -
0.0215) * 1440;

dodgeresid = creatinine sum - dodgepredict;
dodgeresidsg=dodgeresid**2;

harrispredict = 647 + 372*1 + 13.5*calc_kg wt - 10.8%*age_at collect
- 1.47*((age_at_collect-28.4)*(calc_kg wt-80.1));

harrisresid = creatinine_sum - harrispredict;

harrisresidsqg = harrisresid**2;

moriyamapredict = 211 - 6.4*age_at collect +2.5*calc_cm _ht +
18.0*calc_kg wt;

moriyamaresid = creatinine_sum - moriyamapredict;
moriyamaresidsq = moriyamaresid**2;

tanakapredict = -2.04*age_at collect + 14.89 * calc kg wt +
16.14*calc_cm_ht -2244.45;

tanakaresid = creatinine_sum - tanakapredict;

tanakaresidsqg = tanakaresid**2; run;
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/* now create a model with just height and bmi in it using compound
symmetric covariance; use to compare with other models */

ods output SolutionF;

proc mixed data=my.nonrichmondfixed cl covtest method=REML;

class subjectid timel
n_diabetes n_HBP n_kidneystnephr
n_allergies n_drinker n_smoker n_ondiet n onatkinsdiet
n_liftwts n_onpresc n_medcondition n_creatine_supp
n_antidepress n_analgesia n_allergymed n_bloodmed n_kidneymed
n_antibiotic n_GERDmed
n_asthmamed n_diabetesmed n_antiinflam n_thyroidmed n_unknownmed;
model creatinine_sum = calc_bmi calc_cm _ht
/ ddfm=kr s INTERCEPT <c¢l HTYPE=3 residual
outp=predictedvalues ;

repeated /subject=subjectid type=cs ;

run;

data my.modelhtbmionly;

set predictedvalues;

htbmipred=pred;

htbmiresid=resid;

htbmiresidsg=resid*resid;

keep subjectid round day calc_cm_ht calc_kg wt calc_bmi creatinine sum
htbmipred htbmiresid htbmiresidsqg;

rumn;
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Appendix 16

Comparisons of Other Studies’ Participants

Comparison of Studies' Subject Heights
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Figure 16: Comparison of Studies’ Subject Heights
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Comparison of Studies' Subject Weights
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Figure 17: Comparisons of Studies’ Subject Weights
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